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Preface

The justification for adding one more to the many available texts on
vector analysis cannot be novelty of content. In this book I have
included a few topics that are more frequently encountered as part
of the discussion of a specific physical topic — in the main in fluid
dynamics or electrodynamics — but this in itself does not justify
telling the whole story over again, perhaps least of all in the classical
way — in bold-type vectors, excluding suffixes, tensors, #-dimen-
sional space etc. However, after giving a course in the standard shape
for many years (to Scottish students in their second year — roughly
comparable in level to an English first-year University course) I
gradually developed a way of presenting the subject which gave the
old tale a new look and seemed to me to make a more coherent
whole of it. Once my course had taken this shape the students were
left without a suitable text to work from. More and more ad boc
handouts became necessary and finally the skeleton of this book
emerged.

In preparation for publication I spent more time on devising the
sections of exercises than on the main text which was largely in
existence from the start. The exercises were indeed devised rather
than compiled and I am well aware that they reveal my idiosyn-
crasies. I see them as a necessary part of learning a language. Their
nature changes from the ‘plume de ma tante’ level to excerpts from
the Classics and the Moderns — interspersed with lists of idioms.
Predominantly they require a hard grind, which I have tried to
enliven to my taste. The student who is uncertain about integrating
anything beyond x” will not be at a particular disadvantage, but
one who fears algebraic manipulation will face a challenge — though
not without words of encouragement in appropriate places. He will
also be shown by example the advantage of keeping his examples
strictly orderly and he should certainly become increasingly aware
of how much symmetries help one to simplify calculations.
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Preface

I must remark particularly on exercises A after chapter 1 where I
have amused myself by providing — sometimes with considerable
effort — vector relations involving integers only. If 1 had been seeking
physical realism at that stage this would have been utterly inappro-
priate. In defence I would say that in this age of the pocket calcu-
lator any inducement to doing arithmetic by hand should be
welcome.

As the whole concept of my presentation is linked to the visual-
isation of parameterised curved surfaces, their edge curves and the
spaces enclosed by them, a main condition for the conversion of my
lectures into a book was adequate illustration. I have been extremely
fortunate in getting support from an artist who translated the rough
sketches used in my course into superb illustrations. I am very happy
to express here my deep gratitude to Mr P. Flook for this beautiful
artwork.

I have special pleasure in expressing my sincerest thanks to my
secretary, Mrs Rachel Chester. The preparation of this book would
have been delayed by many months, if not altogether frustrated,
without her expert and devoted assistance. Through all stages of this
venture she has produced the typescript of every page of draft and
final manuscript — all the text and all the formulae.

My sincere thanks go also to all members of the staff of the
Cambridge University Press, who have proved most helpful at all
stages of the production of this book.

N.K.
May 1976



Introduction

If one wishes to express in precise and general terms any statement
in physics in which positions, directions and motions in space are
involved the most appropriate language to use is the language of
vectors. In the mechanics of parricles and rigid bodies vectors are
used extensively and it is assumed in this monograph that the reader
has some prior knowledge of vector algebra, which is the part of
vector theory required in mechanics. Nevertheless chapter 1 provides
a summary of vector algebra. There the notation to be used is made
explicit and a brief survey of the whole field is given with stress laid
on a number of particular results that become especially important
later. The reader is also given the opportunity to test his under-
standing of vector algebra and his facility in applying it to detailed
problems: a fairly extensive set of examples (exercises A) follows
the chapter, with some comments and answers provided at the end
of the book.

A considerably widened theory of vectors becomes necessary
when one turns to such parts of physics as fluid dynamics and
electromagnetic theory where one deals not just with things at
certain particular points in space but with the physical objects as
distributed continuously in space. Quantities that are continuous
functions of the coordinates of a general point in space are called
fields and some of the fields of greatest interest in physics are vector
fields. How such vector fields can be described and interrelated by
using the methods of integral and differential calculus is the theme
of the book.

After the introductory chapter 1 there are two further chapters in
which vector fields are not yet mentioned. These deal with geo-
metrical preliminaries. Within mathematics there is an important
subject, differential geometry, in which among many other things
the topics of these two chapters are fully covered. Here we need
only some selected results and these are summarised in precisely the
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Introduction

form wanted for later use. Two non-standard definitions are intro-
duced: the ‘quasi-square’ and the ‘quasi-cube’. A great deal of the
later analysis depends on these and it is hoped that readers will not
skip this preliminary work. The exercises B are designed to familiarise
the student thoroughly with these ideas. The illustrations in the main
text should also help to drive home the important ideas.

Chapter 4 opens the discussion of vector fields and deals with
ideas which are introduced at the very beginning in other books. The
reason why a rather slower approach to them has been chosen is
because in this way one can develop the whole of vector analysis
proper without introducing any further mathematical machinery on
the way. The earlier parts of some other presentations may be
simpler, but then some later mathematical points must either be
taken on trust or be allowed to interrupt the more central part of
the development. Since this text is intended primarily for physicists,
full mathematical rigour is not aimed at, at any stage; but the
assumptions that are necessary to justify the way we proceed later
will all have been stated by the end of chapter 3. As far as the math-
ematics goes the reader will be virtually coasting down hill from then
on.

The real core of the book will be found in chapters 5-9; in particu-
lar the last three of these chapters form a sub-unit within which the
powerful central theorems of vector analysis are established. Then
follow the chapters 10 and 11 which are in the nature of addenda,
containing material which is not always included as part of the
subject. Chapter 12 is then somewhat transitional, leading up to the
final three chapters which deal with topics closely related to the
central theme but involving other ideas as well. In this part it had to
be decided what was worth including and the decisions were strongly
influenced by the thought that many lecture courses on physical
topics could benefit from saving of time often spent on mathematical
preliminaries, which cannot be found so easily in books written for
physicists.

The sets of exercises associated with the earlier parts of the book —
including the central chapters — will be found to be unconnected
with physical applications. They are intended to help the student to
acquire a clear picture of the properties of any vector fields and not
only the special ones that are later of importance. But when it comes
to the later groups of exercises, ideas related to particular physical
situations are introduced. From these the reader should get a first
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Introduction

impression of how the language of vectors helps to make physics the
exact science that it is.

At the beginning of each group of exercises there are comments
on the contents of the group. The student should bear these in mind
and remember that he is not expected to work slavishly through all
the exercises. Different people will feel the need for different
amounts of explicit work before they feel they understand a tech-
nique. The exercises try to cater even for the most dogged characters.
But it is hoped that some of the exercises will be attempted by all
readers — with or without help from the ‘Answers and comments’ at
the end of the book.

There is a fair amount of interconnection between the different
groups of exercises. In a number of cases the student will encounter
the same topic or problem treated with increasing sophistication as
the subject is developed and what can only be worked out with hard
labour at an earlier stage may be seen as a simple consequence of a
general theorem later. Also, the relevance of a particular result to
physics may emerge gradually.

However, while it is hoped that practising on these examples will
benefit the serious student considerably, let him not be under the
illusion that solving them will be directly useful to him in answering
standard British examination questions on vector analysis. Very few
indeed of the exercises are of the traditional format. A few are too
brief — very many more are too long and heavy. None have been
taken from old examination papers. Understanding of how to solve
these exercises will surely be helpful; imitation would be dangerous!

Finally a word about related subjects. There are many fields in
physics, foremost among them the special and general theories of
relativity, in which the limitations of this book — the restriction to
space of not more than three dimensions and the exclusion of tensors
(and of spinors) — are unacceptable. In more advanced disciplines
one must not only widen the range of mathematical objects utilised
but also change drastically the form in which these objects are de-
scribed: tensor analysis not only is but also looks quite different
from vector analysis. But this does not mean that the methods of
this book deserve to be forgotten and replaced by more general ones.
There are still many parts of physics in which vector methods remain
peculiarly appropriate and, what is even more important, no other
approach offers the same combinations of analytic precision with
geometrical descriptiveness. In electromagnetism the physicist will
always need to understand and visualise how electric fields relate to
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Inmtroduction

charges and magnetic fields to currents — as vector theory tells him —
even though he knows that from a more advanced point of view he
should describe these fields combined as a tensor and the charge and

current densities together as a ‘vector in four-dimensional space-
time’.
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1 Summary of vector algebra

1 Addition and multiplication of vectors

The reader of this book is expected to be acquainted with the idea
of representing a directed quantity (e.g. a displacement, velocity
or force) by a vector a, such that the associated length is denoted by

a = laj (L
and the direction by '
' n(ora) = ala. (2)

He will also know the meaning of the sum and the difference of two
vectors @ and b

c=az*xbh (3)
and of the product of a vector 4 with a scalart o,
b = aa. (4)

(Note that (2) is a special case of (4).)

In addition to the product defined by (4), vector algebra recog-
nises two types of product formed from two (and only two) vectors.
Firstly, let @ and & be two arbitrary vectors and let 6 be the angle
between their directions. Then the scalar product a* b of the two
vectors is defined by

a-b = ab cos 8. (5)

Geometrically a * b is the projection of either of the vectors on to
the direction of the other multiplied by the length of the latter. One
notes that

* A scalar may be simply a numerical factor or it may represent a physical
quantity (such as mass, density or temperature) which can be defined without
reference to orientation in space.
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Summary of vector algebra 1

| acos B |
=Yab

b
Fig. 1. The scalar product ¢+ b of two vectors.

and that )
a*b = 0 ifaand b are perpendicular.

The introduction of this product enables one to write down ident-
ities like

laxbh|? = g2 +2a-b + b? (6)
closely resembling theorems of ordinary algebra. The scalar multi-
plication law is commutative,

ab = b-a (7)
and a distributive law
a*b+c¢)y =a*b+a-c (8)

is valid. Both (7) and (8) are used in stating (6).

As scalar multiplication is definable for two vectors and not more,
it cannot be involved alone in any form of associative law. However,
one may note that

ola*b) = (xa)*b = a-(ab), )
where « is a scalar, but that e.g.
a(b+c) # (a*b)c.

The second form of product of two vectors is the vector product.t
Its definition is somewhat more complicated: The vector product
a x b is the vector ¢ that has the magnitude

c = absinf (10)

and the direction perpendicular to both @ and & so that

T We are not here concerned with the fact that the possibility of defining a
vector in this way is confined entirely to the physically interesting case of
three space dimensions and even then requires a conventional choice of the
direction into which the product vector shall point. From a more advanced
point of view a X b is what is known as an axial vector or pseudo-vector. It is
more properly related to the plane of the vectorsa and b than to the direction
perpendicular to it.
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1 Addition and multiplication

Area =|c|=|ax b|

Fig. 2. The vector product @ X b of two vectors.

ca =c*b =0, an
Furthermore
a, b, c, in that order, form a right-handed system. (12)

The most striking and unusual feature of this definition of a product
is that it is anticommutative and not commutative,

bxa = —axb. (13)

This follows from (12) since b, a, — ¢ and not b, a, ¢ form a right-
handed system. Either (10) or (13) demonstrates that

axa = 0. (14)

Of particular importance to us is the fact that the magnitude ¢ of
a x b (see (10)) is the area of the parallelogram subtended by the
two vectorsa and b..

We refrain from giving the non-trivial proof that vector multi-
plication is distributive, i.e. that

axb+c) =axbtaxc (15)

but would observe that the particular definition chosen for this
vector product is determined by the need to have a law like (15).
Without it this product construct would be of little use.

On the associative law the same remarks apply as for the scalar
product. The identities

oalax b) = (aa) x b = ax (ab) (16)

are correct.

3



Summary of vector algebra 1

In addition to the two types of product formed from two vectors,
it is useful to single out from among various products that are
definable as a consequence of the rules already stated, one product
involving three vectors, a, b and c. It is a scalarT product and apart
from the sign it is the only scalar that can be formed from three
vectors. It is

(@,b,c) =a*(bxc) = b(cxa) = c-(axb). (17)

By virtue of (13) one sees that a non-cyclic interchange among the
three vectors reverses the sign of this scalar triple product. If a, b and
¢ form a right-handed triplet (and, in particular are not coplanar) the
triple product (16) is positive and equal to the volume of the
parallelepiped subtended by the three vectors. In general (using the
modulus sign in its non-vectorial algebraic sense) that volume must
be stated as |{(a, b, ¢)|.

There are numerous identities that follow from the definitions
given above. Without any proofs we provide a list of those that will
be of use later in the book (a, b, c, d, e represent arbitrary vectors
throughout):

ax(bxec)y = (@ac)b—(a*b)c (18)
axbxe)+bx(exa)+cx{axb) =0 (19)
(@axb)(cxd) = (@ac)bd)—(a-d)(b-c). (20)

For ease of reference at a particular point in the text below, it is
worth re-writing the right hand side of (20) in a slightly different
and rather clumsy looking form:

@xb)-(exd) = b-[(a*c)d] —a-[(b-c)d]. (20"

This reformulation involves nothing more than a simple use of
relation (9).
Two further identities of considerable importance are:

(a,b,c)d = (@a-d)bxc)+ (b-d)(cxa) (21)
+ (c*d)ax b)

and a closely related equation:
(a,b,c)d = [(bxc)*dla+ [(cxa)-d]b
+ [(@ax b)-d]c. (22)
Finally, by multiplication of both sides of (21), by e, one finds

t In fact a pseudo-scalar; see footnote on p. 2.
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2 The cartesian components
(@,b,c)(d-e) = (@ad){(bxc)e] +(b-d)(cxa)e]
+ (c+d)[(ax b)-e]. (23)

As for (20), a trivial re-formulation of (22) will be stated for future
reference:

(a,b,c){de) = (bxc) [a-d)e]+ (cxa)-[(b-d)el
+ (a x b): [(c-d)el. (23")

The fact that one is concerned with space of precisely three
dimensions is expressed mathematically by the statement that three,
but not more than three, vectors can be linearly independent. Linear
independence of three vectors means geometrically that (e.g. when
drawn from the same origin) they do not lie in the same plane. Hence

(a,b,¢c) ¥ 0 24)

means that a, b, ¢ are linearly independent. If (24) holds, then any
further vector d must be expressible as a linear combination of the
first three. This is precisely what equation (22) puts in evidence.

One is not frequently interested in using {(22) in full generality,
but a special case of (22) is very well known indeed; this will be the
subject of the next section.

2 The cartesian components of a vector

We introduce for the first time the notion of a set of three ortho-
gonal unit vectors 7, j and &, which in particular we choose (in that
order) to be a right-handed set. Then we have

il = )jl = 1kl = 1, jok =k+i=ij=0

G,j,k) = + 1. (25)
The theorem that a general vector d may be represented as
d = dit+d,j+dsik (26)

is recognised at the very beginning of vector algebra and it is equally
well known that

dl = d'i, d2 = d'j, da = d'k. (27)

The reader may care to check that (26) follows from the much more
general (22) with the use of (25) and (27).
Having by (27) represented a general vector by its three ‘cartesian’
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