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Preface

The study of the subgroup growth of infinite groups is an area of mathematical
research that has grown rapidly since its inception at the Groups St. Andrews
conference in 1985. It has become a rich theory requiring tools from and having
applications to many areas of group theory. Indeed, much of this progress is
chronicled by Lubotzky and Segal within their book [42].

However, one area within this study has grown explosively in the last few
years. This is the study of the zeta functions of groups with polynomial sub-
group growth, in particular for torsion-free finitely-generated nilpotent groups.
These zeta functions were introduced in [32], and other key papers in the de-
velopment of this subject include [10, 17], with [19, 23, 15] as well as [42]
presenting surveys of the area.

The purpose of this book is to bring into print significant and as yet
unpublished work from three areas of the theory of zeta functions of groups.

First, there are now numerous calculations of zeta functions of groups by
doctoral students of the first author which are yet to be made into printed form
outside their theses. These explicit calculations provide evidence in favour of
conjectures, or indeed can form inspiration and evidence for new conjectures.
We record these zeta functions in Chap.2. In particular, we document the
functional equations frequently satisfied by the local factors. Explaining this
phenomenon is, according to the first author and Segal [23], “one of the most
intriguing open problems in the area”.

A significant discovery made by the second author was a group where
all but perhaps finitely many of the local zeta functions counting normal
subgroups do not possess such a functional equation. Prior to this discovery,
it was expected that all zeta functions of groups should satisfy a functional
equations. Prompted by this counterexample, the second author has outlined
a conjecture which offers a substantial demystification of this phenomenon.
This conjecture and its ramifications are discussed in Chap. 4.

Finally, it was announced in [16] that the zeta functions of algebraic groups
of types B;, C; and D; all possessed a natural boundary, but this work is
also yet to be made into print. In Chap.5 we present a theory of natural
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boundaries of two-variable polynomials. This is followed by Chap.6 where
the aforementioned result on the zeta functions of classical groups is proved,
and Chap. 7, where we consider the natural boundaries of the zeta functions
attached to nilpotent groups listed in Chap. 2.

The first author thanks Zeev Rudnick who first informed him of Con-
jecture 1.11, Roger Heath-Brown who started the ball rolling and Fritz
Grunewald for discussions which helped bring the ball to a stop. The first
author also thanks the Max-Planck Institute in Bonn for hospitality during
the preparation of this work and the Royal Society for support in the form of
a University Research Fellowship. The second author thanks the EPSRC for
a Research Studentship and a Postdoctoral Research Fellowship, and the first
author for supervision during his doctoral studies.

Oxford, Marcus du Sautoy
January 2007 Luke Woodward



Contents

1 Introduction .......... ... ... . ... . 1
1.1 A Brief History of Zeta Functions ......................... 1
1.1.1 Buler; Riemanm »: vuses smssnsms susssses sosanemsinss 1
1.1.2 Dirichlet ... ... . . .. 3
1.1.3 Dedekind....... ... ... 4

1.1.4 Artin, Weil ... ... 5
1.1.5 Birch, Swinnerton-Dyer ............................ 6

1.2 Zeta Functions of Groups.............. ... ... ... ... ....... 6
1.2.1 Zeta Functions of Algebraic Groups.................. 7
1.2.2 Zeta Functions of Rings . ....... ... .. ... ... ... ... ... 9
1.2.3 Local Functional Equations ... ...................... 10
1.24 Uniformity s ims svsasins sanins sasanins sasanins o 11
1.2.5 Analytic Properties . ........... ... ... .. .. .......... 12

1.3 p-AdicIntegrals ........ ... .. 14
1.4 Natural Boundaries of Euler Products...................... 16
2 Nilpotent Groups: Explicit Examples ...................... 21
2.1 Calculating Zeta Functions of Groups . ..................... 21
2.2 Calculating Zeta Functions of Lie Rings .................... 23
2.2.1 Constructing the Cone Integral...................... 23
2.2.2 ReSOMBION : 4 smis ssows smswnsme smsms sws sssms amaiwn sws 25
2.2.3 Evaluating Monomial Integrals . ..................... 31
2.2.4 Summing the Rational Functions .................... 32

2.3 Explicit Examples .. ... 32
2.4 Free Abelian Lie Rings .. .......... ... .. ... . ... 33
2.5 Heisenberg Lie Ring and Variants ......................... 34
2.6 Grenham’s Lie Rings........... ... ... ... .. ... 38
2.7 Free Class-2 Nilpotent Lie Rings .......................... 40
2.7.1 Three Generators. . ..........c.oouuiuuineinennenn... 40
272 m ' Generators svsws smsspiws smsms sms inEEs RIS iHE Had 41

2.8 The ‘Elliptic Curve Example’ ........ .. ... ... ........... 42



Contents

2.9 Other Class Two Examples ....... ... ... ... ... ... ...... 43
2.10 The Maximal Class Lie Ring M3 and Variants .............. 45
2.11 Lie Rings with Large Abelian Ideals ....................... 48
202 F3 g e e 51
2.13 The Maximal Class Lie Rings My and Fily . ............. .. .. 52
2.14 Nilpotent Lie Algebras of Dimension < 6 ................... 55
2.15 Nilpotent Lie Algebras of Dimension 7 ..................... 62
Soluble Lie Rings . . ... i 69
3.1 Introduction .......... ... 69
3.2 Proof of Theorem 3.1 . ... ... ... .. ... . . . . ... 71
3.2.1 Choosing a Basis for tt,(Z) .. ..., 71
3.2.2 Determining the Conditions ........................ 72
3.2.3 Constructing the Zeta Function ..................... 74
3.2.4 Transforming the Conditions........................ 74
3.2.5 Deducing the Functional Equation................... 75
3.3 Explicit Examples «: s s 500 sacns cns swsmnens swpms sms sesms 77
3.4 Variations .. ... 78
3.4.1 Quotients of tt,,(Z) ... 78
3.4.2 Counting All Subrings ........ ... .. ... ... .. .. ... 82
Local Functional Equations ................................ 83
4.1 Introduction ............ ... ... 83
4.2 Algebraic Groups . ... ... ..ot 83
4.3 Nilpotent Groups and Lie Rings . ........ ... ... ... ... ... 83
A4 The Conjectiie : corms sws smrme sws a8ims s@s awins tesnesms yus 84
4.5 Special Cases Known to Hold . ............................ 86
4.6 A Special Case of the Conjecture ... ....................... 87
4.6.1 Projectivisation ......... ... .. ... i 88
46,2 ResOIItION : svms sws swims sosnmsms smiamems gpsns sms sms 89
4.6.3 Manipulating the Cone Sums ....................... 91
4.6.4 Cones and Schemes . ... .. 93
4.6.5 Quasi-Good Sets . ...... ... 95
4.6.6 Quasi-Good Sets: The Monomial Case ............... 97
4.7 Applications of Conjecture 4.5 .. ... ... .. ... ... .. ..., 98
4.8 Counting Subrings and p-Subrings . ........ ... ... ... ... ..., 102
4.9 Counting Ideals and p-Ideals . .......... ... ... .. .. ....... 103
4.9.1 Heights, Cocentral Bases and the 7-Map ............. 104
4.9.2 Property () ..o 107

4.9.3 Lie Rings Without () ........ ... ... 119



Contents XI

Natural Boundaries I: Theory ............................. 121
5.1 A Natural Boundary for (asp (S) ..o oo 121
5.2 Natural Boundaries for Euler Products . .................... 123
5:2.1 Practicalities. :: :e: sovwsvuscmims ios pmens swamasms sas 134
5.2.2 Distinguishing Types I, Il and IIT ................... 136
5.3 Avoiding the Riemann Hypothesis ......................... 139
5.4 All Local Zeros on or to the Left of R(s) =0 ............... 142
5.4.1 Using Riemann Zeros ............ ..., 143
5.4.2 Avoiding Rational Independence of Riemann Zeros . ... 145
5.4.3 Continuation with Finitely Many Riemann Zeta
Functions ......... .. .. . . 149
5.4.4 Infinite Products of Riemann Zeta Functions.......... 150
Natural Boundaries II: Algebraic Groups .................. 155
6.1 Introduction . ... ...c. mssmens inidnias 5 Saifs 8a s $@57 &8 155
6.2 G=GOqg 1 0fType By ... 159
6.3 G = GSpy of Type Cpor G =GOz, of Type Dy ... .. 161
6:3.1 G =GSpy; Of TYDPE Ol s vuiws cwsssvmssesssmssssmenss 162
632 G=00 of Type D cs:isasusscorsnsssomsansms smins s 165
Natural Boundaries III: Nilpotent Groups ................. 169
7.1 Introduction ............ ... 169
7.2 Zeta Functions with Meromorphic Continuation ............. 169
7.3 Zeta Functions with Natural Boundaries. .. ................. 170
7.3.1 Type L ..o 171
7.3.2 Typell ..o 171
7.3.3 Typelll ... 173
T4 Other Types : sscss sossnsms cosaisis sasms sms s@s8% s@s@ss@i s 177
741 TypesHlaand IIb......... ... ... ... ... ........ 177
742 TypesIV, Vand VI ... .. .. .. .. ... ... .. ... ..... 177
Large Polynomials .. ........ ... ... ... ... .. ... . i, 179
A1 H Counting Ideals, +:cusms cosms 153 snsms smiamins susas smis 179
A.2 gg.4, Counting All Subrings . ......... ... ... .. .. . ... 180
A.3 Ty, Counting All Subrings . ......... .. ... ... 180
A4 Ligogy, Counting Ideals . ... .oounvvivnivtinimnrnsvuimn v 181
A5 G3 xgs53, Counting Ideals . .......... ... ... ciiiina... 182
A.6 gg12, Counting All Subrings .......... ... .. ... ... ... ... 183
A.7 gi357c, Counting Ideals . ........ ... .. ... . . .. 184
A8 gia57a, Counting Ideals. .. ... ... .. .. il 186
A9 giasig, Counting Ideals.. s vmevwe smsns sws vwsws sasnpsns swes 187
A.10teg(Z), Counting Ideals . . . ...t .. 188

A.11 te7(Z), Counting Ideals . . ... ... i 188



XII Contents

B Factorisation of Polynomials Associated

toClassical Groups . .......... ... it 191
References . ... ........ ... .. . . . . 201
Index . ... 205



1

Introduction

1.1 A Brief History of Zeta Functions

Zeta functions are analytic functions with remarkable properties. They have
played a crucial role in the proof of many significant theorems in mathematics:
Dirichlet’s theorem on primes in arithmetic progressions, the Prime Number
Theorem, and the proofs of the Weil conjectures and the Taniyama-Shimura
conjecture to name just a few.

Many different types of zeta function have been defined. We summarise
below some of the more significant ones.

1.1.1 Euler, Riemann

In the eighteenth century a number of mathematicians were interested in
determining the precise value of the infinite series

1 1 1 1
l+-+-4+—=+-+—=5+--, 1.1
titgtt tat (1.1)

the sum of the squares of the harmonic series. Daniel Bernoulli suggested 8/5
as an estimate for its value, but it was Leonhard Euler who first gave the
precise value of this sum. To do this, Euler defined the zeta function

for s € R, s > 1. The infinite sum (1.1) is then the zeta function evaluated at
s = 2. However Euler was able to do more than just give the value of ((2).
He gave a formula for the zeta function at every even positive integer:

22m— 1ﬂ.21n |B27n |

§(2m) = (2m)!
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As an acknowledgement of the support the Bernoulli family had given him,

he was able to identify the rational constants Bs,, as the Bernoulli numbers

discovered by Daniel’s uncle Jacob. Since By, = 1/12, it follows that ((2) =

72 /6. To this day, nobody has been able to find a comparable expression for

the zeta function at odd integers. It is not even known if ¢(3) is transcendental.
Euler also discovered the Euler product identity. If one sets

- — -ns I
G = S =

n=>0

then
Cls) =TT ¢t -
p

where the product is over all primes p. This identity is fundamental to the
connection between the zeta function and the primes. As well as encapsulating
the Fundamental Theorem of Arithmetic, it also offers a simple analytic proof
of a classical result on primes: the fact that the harmonic series 14+1/2+-- -+
1/n+ --- diverges means that there must be infinitely many primes.

The zeta function converges for s > 1 but diverges at s = 1. Later,
Bernhard Riemann, inspired by Cauchy’s work on functions of a complex
variable, considered the zeta function as a function on C. By doing so, he
could analytically continue the zeta function around the pole at s = 1, and
obtain a function meromorphic on the whole complex plane. The pole at
s = 1 is simple and is the only singularity of the zeta function. Furthermore,
Riemann showed that this zeta function satisfies a functional equation. If one
sets £(s) = I'(s/2)7%/2C(s), where I'(s) is the gamma function, then

£(s) =&(1—s). (1.2)

This analytically-continued function is now known as the Riemann zeta func-
tion in honour of Riemann’s achievements with it.

Since the zeta function is nonzero for R(s) > 1, the only zeros of the
Riemann zeta function with R(s) < 0 are the trivial zeros at negative even
integers. Hence the only other zeros are those within the critical strip, 0 <
R(s) < 1. Riemann famously hypothesised that all the zeros lie on the critical
line R(s) = % Hardy and Littlewood [33] have since proved the existence of
infinitely many zeros on the critical line and Conrey [3] has proved that more
than 40% of the zeros lie on the line. At the time of writing, the most recent
computer calculation [27] seems to have confirmed that the first ten trillion
(10'*) Riemann zeros are on the line. Despite all this evidence, it is still not
known whether a zero lies off the line.

Such is the importance of this Hypothesis that there is a considerable
body of mathematical work which depends on the truth of this Hypothesis.
Its proof would simultaneously prove numerous other theorems for which its
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truth has had to be assumed. Furthermore, its status as one of the Clay
Mathematics Institute Millennium Prize Problems would also earn its author
a million-dollar prize.

Hadamard and de la Vallée Poussin were also able to utilise the power
of the Riemann zeta function. By showing that the Riemann zeta function is
nonzero on R(s) = 1, they independently proved the Prime Number Theorem,
that

m(n)logn

lim —————— =
n—oo n

where 7(n) is the number of primes no larger than n.

1.1.2 Dirichlet

In the meantime, Dirichlet was taking the concept of the zeta function in a
new direction. His major innovation was to attach a coefficient a, to each
term n—°. Recall that the Riemann zeta function is defined for R(s) > 1 by

A Dirichlet character with period m is a function y : Nyg — C that has the
following properties:

e 1 is totally multiplicative, i.e. x(1) = 1 and x(n1)x(n2) = x(niny) for all
ny,ny € Nyg.

e x(m+n)=x(n) for all n € N5.

e x(n)=0if ged(n,m) > 1.

The Dirichlet L-function of x is defined by

o0

L(s,x) = Z x(n)n=*%.

n=1

Using these L-functions, Dirichlet proved that if ged(r, N) = 1, the arithmetic
progression r, 7 + N, r + 2N, ... contains infinitely many primes. Further-
more, his proof yields the additional result that the primes are in some sense
evenly distributed amongst the congruence classes of integers coprime to V.
In honour of this achievement, any function of the form f(s) = > 7" ann™*
is called a Dirichlet series.

If m = 1 then y is the trivial character, hence L(s, x) = ((s), the Riemann
zeta function once again, which we know can be meromorphically continued
to C. If m > 1, L(s, x) can be analytically continued to an entire function on
C. Indeed, the fact that L(s, ) is nonzero at s = 1 for nontrivial characters
x plays a key part in Dirichlet’s proof. A functional equation of L(s, x) which
takes a similar shape to (1.2) can also be given, however its statement is
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less succinct than that satisfied by the Riemann zeta function. We refer the
interested reader to the section on Dirichlet L-functions in [37].

The multiplicativity of the characters y leads easily to an Euler product
for the Dirichlet L-function,

1
e x) =] ———.
(&:X) 1,_[ 1= x(p)p~*

Indeed, it is easy to see that any Dirichlet series where the sequence (a,,) grows
at most polynomially in n and is totally multiplicative (i.e. a;,a, = @, for
all m,n € N) satisfies such an Euler product.

1.1.3 Dedekind

The zeta functions described above have had predominantly number-theoretic
applications. It was Dedekind who was perhaps the first to use zeta functions
for an algebraic purpose. For K a finite extension of the rational numbers @,
the Dedekind zeta function of the field K is defined by

Ck(s) =) |9k a™*,

where |¥k : a| is the index of the ideal a in the ring of integers ¥x and the
sum is over all nonzero ideals a in Y. Again, this zeta function extends to a
meromorphic function on C, with a simple pole at s = 1.

Perhaps one of the most remarkable properties of the Dedekind zeta func-
tion is the class number formula, which encodes the class number of the field
in the residue of the pole of (i (s) at s = 1. If A(K) is the discriminant of the
field K, Ry the regulator of K, u the order of the group of roots of unity within
the ring of integers ¥, r1 (resp. r2) is the number of real (resp. the number
of pairs of complex conjugate) embeddings of K and hg the class-number of
K, then

Ress=1(Cx (8)) = % .

As with the Riemann zeta function and Dirichlet L-functions, the Dedekind
zeta function satisfies a functional equation. Let n = |K : Q|, the degree of
the field extension, and put

K(s) = (M) r(3)" rercx).

(1

2r2qrn/2 2

Then Zg(s) = ZEx(1 — s).
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1.1.4 Artin, Weil

Dedekind’s zeta function considers finite extensions of the rational numbers
Q. E. Artin considered zeta functions connected to finite extensions of global
fields of characteristic p. One particular example he considered was the field
K = F,(z)(vVa3 — x), i.e. the field of rational functions with coefficients in
F,(x) extended by adjoining V23 — x. Let R be the integral closure of Fp[z]
in K. Artin considered the zeta function

Cr(s) =) [R:a™*.
adR

If one sets y = V&3 — x, then quite clearly we have an elliptic curve y? =

x® — x. Artin found that the zeta function (r(s) was encoding the number of
points on this elliptic curve. In particular,

o0

. N~ ms
Crls) = (1—p~*)exp (Z +> ,

m=1

where
Ny = [{ (a,0) € P2 117 =a® —a}| +1.

The extra term is necessary to count the point at infinity in projective space.
Furthermore, Artin could show, for this elliptic curve and about 40 others,
that

exp f: Npmp~™s N (1+ ﬂ—pp:.”)(l + 7_rp~p.—s)
2 A—p )L p)
for a certain pair of complex conjugate numbers 7, and 7, which depend on
the elliptic curve. Hasse later extended this result to all elliptic curves, and
WEeil to all smooth projective curves of arbitrary genus. Indeed, this property
that the zeros of the zeta function satisfy || = p'/? is known as the analogue
of the Riemann Hypothesis for the zeta function.

Weil was inspired by his work to consider the zeta function of an arbitrary
smooth projective variety X defined over a finite field F,. This is defined
analogously to Artin’s zeta function, but omitting the factor (1 — p—*), by

oo Nomag=™s
Cx(s) = oxp (Z +) ,

me=1

where Ngm is the number of points on X over the field Fgn. In particular,
(x(s) was conjectured to always be a rational function in ¢~*, and to satisfy
the functional equation (x(n — s) = iq%"—s)ng(s), for some constant C
which can be given explicitly in terms of geometrical invariants of X. Weil was
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also able to formulate a strategy for proving these conjectures. He observed
that if one has a suitable cohomology theory similar to that for varieties
defined over C, the conjectures follow from various standard properties of
this cohomology theory. This observation motivated the development of vari-
ous cohomology theories and eventually led to the development of the [-adic
cohomology by Grothendieck and M. Artin, successfully employed by Deligne
to confirm these conjectures.

1.1.5 Birch, Swinnerton-Dyer

If one has a polynomial equation over Z, one can reduce it modulo p to give a
variety defined over a finite field. So, given the zeta functions for the reductions
mod p, what do we get when we multiply them all together? Does this ‘global’
zeta function tell us anything about the solutions of the original polynomial
over Q or Z?

In the case where X is an elliptic curve defined over @Q, such a global zeta
function has been defined. If E is an elliptic curve over @, the L-function of
E is defined by!

L(E,s) = ] !

oha L app P

where A is the discriminant of E, IV, is the number of points on £ mod p
and a, = p — N,. This Dirichlet series converges for R(s) > % and thanks
to the complete proof of the Taniyama-Shimura conjecture [1], it is known
that L(F,s) can be analytically continued to an entire function. A functional
equation relating L(E, s) and L(E, 2—s) also follows from Taniyama -Shimura.
It was conjectured by Birch and Swinnerton-Dyer that E has infinitely many
rational points if and only if L(E,s) is zero at s = 1, and furthermore the
torsion-free rank of the Mordell-Weil group of points on E over Q is the order
of the zero at s = 1. Coates and Wiles [2] have proved that if L(E.1) # 0
then E has only finitely many rational points, and it has since been shown
that the conjecture is true for » < 1 [5]. However the rest of the conjecture
remains open. Like the Riemann Hypothesis, the Clay Foundation offers a
million-dollar prize for the proof of this conjecture.

1.2 Zeta Functions of Groups

By no means is the above a complete list of zeta functions. We have omitted
more than we have included, for we simply do not have the space to list them
all. The final chapter of the Encyclopedic Dictionary of Mathematics [37] is

! There are factors associated to the primes p | 2A but for simplicity we ignore
them.
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a good place to start for those keen to know more about the panoply of zeta
functions.

Furthermore, the Encyclopedic Dictionary also lists four basic properties
a zeta function should ideally satisfy:

(ZF1) Tt should be meromorphic on the whole complex plane
(ZF2) It should have a Dirichlet series expansion

(ZF3) There should be some natural Euler product expansion
(ZF4) It should satisfy a functional equation

All the zeta functions we listed above satisfy all four of these properties. It
may also be of interest to determine the residue of the zeta function at a pole,
whenever such a singularity exists.

In this book, we consider these criteria for a relative newcomer to the
family of zeta functions, zeta functions of groups and rings. We cannot expect
that these zeta functions will reach the same lofty heights as the zeta functions
presented above, but we do hope the reader agrees with our viewpoint that
there is interesting mathematics concerning zeta functions of groups.

1.2.1 Zeta Functions of Algebraic Groups

The first example of a zeta function of a group is associated to a Q-algebraic
group & with a choice of some Q-rational representation p : & — GL,,. The
zeta function Zg ,(s) of & has been defined as the Euler product over all
primes p of the following local zeta functions defined by p-adic integrals with
respect to the normalised Haar measure pig on &(Z,):

Zopn(s) = [ 1det(olo)lj dns(a)

B,

where &1 = p~! (p(6(Q,)) N My(Zy)) and | - |, denotes the p-adic norm.

The definition of the zeta function of an algebraic group goes back to the
work of Hey [35] who recognised that the zeta function attached to the alge-
braic group GL,, could be used to encode the subalgebra structure of central
simple algebras. In the 1960s, Tamagawa established in [56] the meromorphic
continuation of the zeta functions of Hey attached to GL,. Subsequently,
Satake [50] and Macdonald [43] considered zeta functions of other reductive
groups. But it is the work of Igusa [36] in the 1980s that established explicit
expressions for the local factors of Chevalley groups which allow for some
analysis of the analytic behaviour of the global zeta functions. In particular
his work shows that the zeta function is built from Riemann zeta functions
and functions of the form

Zs)= [ wwr™), (1.3)

p prime



