PASCAL
FOR FORTRAN

PROGRAMMERS

Ronald H. Perrott
Donald C. S. Allison

8465029

PASCAL
FOR FORTRAN
PROGRAMMERS

Ronald H. Perrott

The Queen’s University of Belfast

Donald C. S. Allison

Virginia Polytechnic Institute

: y

\
”
”

AR

E8465029

COMPUTER SCIENCE PRESS

Copyright ©1984 Computer Science Press
Printed in the United States of America.

All rights reserved. No part of this work may be reproduced, transmitted,
or stored in any form or by any means, without the prior written consent of
the publisher, except by a reviewer who might quote brief passages in a
review or as provided for in the Copyright Act of 1976.

Computer Science Press, Inc.
11 Taft Court
Rockville, Maryland 20850

123456 87 87 85 84
Library of Congress Cataloging in Publication Data

Perrott, Ronald H., 1942-
Pascal for FORTRAN programmers.

Bibliography: p.

Includes index.

1. PASCAL (Computer program language) 1. FORTRAN
(Computer program language) 1. Allison, Donald C. S.,
1983- . II. Title.

QA76.73.P2P47 1983 001.64°24 82-7253
ISBN 0-914894-09-9 AACR2

PREFACE

During the sixties the cost of software production and its subsequent use
began to exceed the cost of the hardware on which it was executed. Also, the
reliability of the programs was suspect while their adaptation or modification
to a similar but slightly different situation was a difficult and at times an
impossible task. However, the development of new programming methods
under the headings of stepwise refinement or structured programming led to
the introduction of languages and techniques which produced software of
improved quality and reliability at a reasonable cost. These improvements do
not appear to have been widely disseminated among the engineering and
scientific communities. Naturally, programmers and managers were reluctant
to discard and rewrite existing applications.

These communities have traditionally used FORTRAN for their applica-
tions. Hence, it is the objective of this book to examine some of the advances
which have been made, as represented by the language PASCAL, and to show
(where possible) how these can be expressed in FORTRAN. The design and
implementation of PASCAL is one of the major contributions to program-
ming language development over the last decade. PASCAL gained immediate
recognition particularly as a teaching language for illustrating the concepts of
structured programming, but now it has penetrated the majority of computer
applications. It is currently being offered by most of the major manufacturers
and on many small machines.

When FORTRAN was first introduced in 1957, the majority of pro-
grammers used machine code and felt that this was the best way to obtain
efficient use of their machine. PASCAL today meets the same attitude from
many FORTRAN programmers.

The approach used in this text was conceived during a sabbatical year at
NASA’s Ames Research Center by one of the authors. During that time
questions were frequently asked about PASCAL; how it differed from FOR-
TRAN, and what were the benefits to be gained by using it. The majority of
the questioners were programmers, system analysts, scientists, and engineers
who were currently engaged on projects which used FORTRAN; they were
not inclined or motivated under such circumstances to make the effort tolearn
another language like PASCAL.

This book is intended to make such a transition as easy as possible, or at the
very least, answer the above questions. It explains the program and data

ix

X Preface

structures which are available in PASCAL and shows (where appropriate)
how to express them in FORTRAN and how to apply the process known as
stepwise refinement.

Very compelling reasons are necessary to invest time and energy to learn a
new language like PASCAL. However, the investment can be very worth-
while. The rich data and control structures and good debugging facilities of
PASCAL mean that a program can be designed and written in less time, with
less effort, requiring less coding, resulting in less opportunity to make errors
and, therefore, requiring less time to find, diagnose, and correct other errors.

PASCAL encourages the process of stepwise refinement so that larger
problems can be divided up into more manageable portions or components.
The components can then be refined with a minimum of concern for the other
components. Such an approach enables the program’s documentation to be
included at the design phase. If an error is discovered either in the refinement
or at the testing stage, it is possible to identify how much of a component, or
indeed the program, must be corrected. This also enables a program to be
easily modified for a similar type of application or simply maintained by a
different programmer.

The maintenance and adaptation of a program is an important property for
a scientific or engineering application program. As more knowledge is gained,
both from theoretical studies and practical experiments, more comprehensive
models are required. This invariably means modifications to an existing
program. In such circumstances the readability and clear structure of a
PASCAL program is a decided advantage.

Another reason for using alanguage like PASCAL is its portability. There
is one document which has been widely used for its definition and its imple-
mentation, and there are very few machine dependent features. The result has
been that the movement of programs between various machines, even of
different architecture, has been relatively easily achieved.

This widely referenced document on PASCAL, which is used in this text, is
the PASCAL User Manual and Report by K.Jensen and N.Wirth. More
recently a proposed PASCAL Standard has been under consideration by the
International Standards Organization, and reference is made to this docu-
ment also.

FORTRAN can give rise to syntactic subtleties which a compiler will fail to
detect. For example, the first American space probe to Venus was aborted
after it went off course. The reason was traced to a FORTRAN program
statement which was syntactically correct (confusion between a comma and a
period). It occurred in a statement of the form:

DO6I=1, 25

The comma had been mistakenly written/punched as a period. This caused

the FORTRAN compiler to create a new variable name DO 6 I and to give this

Preface xi

variable the value 1.25. This error was undetected during the program read-
ing, debugging, and testing phases.

Such an error would have been detected by a PASCAL compiler on the first
attempt at compilation. In this case the savings would have been immense, in
time, effort, and cost of human and financial resources.

A PASCAL compiler subjects a program to a series of rigorous compile-
time and (optional) run-time checks. These checks are applied to both pro-
gram and data structures and substantially reduce the chance of programmer
error. This completely abolishes the very kind of error which, in FORTRAN,
gives rise to the most resistant programming errors. This is not to say that
PASCAL is a language without defects, and the last chapter of this book has
been devoted to the consideration of the disadvantages of PASCAL.

This is a book primarily about PASCAL and programming for those who
know some (or all of) FORTRAN and want to learn about PASCAL. All the
features of PASCAL are examined and explained by identifying and compar-
ing them with their corresponding features in FORTRAN. In many places
there is no direct FORTRAN equivalent, and the book shows what a FOR-
TRAN programmer must do. The translation methods are illustrated in terms
of FORTRAN 77, although differences with earlier versions of FORTRAN
are also mentioned.

Hence, not all the features of FORTRAN 77 are considered, only those
which are required to illustrate the PASCAL features. Also there are a few
features in FORTRAN which have no equivalent feature in PASCAL, for
example, the double precision data type and the statement function. Syntax or
railroad diagrams are used to illustrate the features of both languages in the
text. The complete set of syntax diagrams for each language is given in the
Appendices, which can be used for reference purposes.

Several case studies are given throughout the chapters to illustrate the
benefits of and the use of the different program and data structures. The
emphasis has been on non-numerical problems. By using this approach to
PASCAL, it is hoped that a scientist or engineer or any one familiar with
FORTRAN can learn about PASCAL and structured programming and
recognize the advances which have been made in programming language
development.

Finally, we would like to thank all those people who read drafts of the
manuscript and pointed out mistakes and ambiguities and made valuable
comments. In particular, thanks are due to J.A.N. Lee, J. Elder and P.
Dhillon.

Ron Perrott
Don Allison
September 1982

8465029

TABLE OF CONTENTS

Preface........coiiiiiiiiiiiiiiiiiiiiinnann, e N e e e
1. HISTORICALOVERVIEW g o oG \: 5
1.1. The History of FORTRAN TR L .
1.2. TheHistory of PASCAL PROREE" Y A
2. STRUCTURED PROGRAMMING........... Treer / ces
2.1. ProgramDesign..................... i
22, CaseStudyoiii
3. BASICCONCEPTSooviiinieeeea e
3.1. StatementLayout
3.2. Identifiers or Symbolic Names.......................
3.3. Syntaxor Railroad Diagrams........................
3.4. Program Structure........................ oo
3.5. SimpleInputandOutput
B 0 R o 1 A
B.5.2 OULPUL .« vivs i mvmmeweiowe oo mms a5 55 w85 s m e e
3.6 Summary ...
Exercises
4. SIMPLE DATA TYPES AND CONSTANTS
4.1. Standard Data Types............................. ..
4.1.1. TheTypelnteger
4.1.2. TheTypeReal............................. .
4.1.3. The Type Boolean (LOGICAL)
4.1.4. TheType Character.........................

4.1.5. The Types COMPLEX and DOUBLE
PRECISION.cvviiiiieieniinnnnn,
4.2, Constantsoo i
4.3. User Constructed Types (Unique to PASCAL)

v

=2

15
15
17
20
22
24
25
29
32
33

35
36
36
39
43
46

48
49
53

vi

Contents

4.4.

STATEMENTS

S.1.
5.2,
3.3,
5.4.

5.5.

5.6
Sl

6.1.

6.2.

6.3.

6.4.

6.5.
6.6.

4.3.1.
4.3.2.

Enumerated Type........coiniiiiniienenn..
Subrange Type ...,

SUMIMATY ..ttt ittt ettt et et
EXeICISES . vttt e e e

Assigniment StateMent :s: coswssosnsssisminssnsonsos
GOt SLALEMENT s msmssnis arsmsssmnasamasnommemneme

5.4.1.
5.4.2.

Multiple Choice Constructs

Repetitive Statements

5.5.1.
5.5.2.
5.5.3-

Repetition a Predetermined Number of Times . . .
Repetition a Variable Number of Times
SPtLOOD ..o v e

Case Study: TossingaDieccouu....
SUMMAaryouiiiiii i
EXercisesc.oouuiinin

STRUCTURED DATA TYPES: ARRAYS AND RECORDS ..
The ATTay Data. TYDE . ssis ssswniassnsssnessonsmons

6.1.1.
6.1.2.
6.1.3.

Declaration
Manipulation
More on PASCAL Arrays.........covvuvnn..

The Record Data Type (Unique to PASCAL)

6.2.1.
6.2.2.
6.2.3.
6.2.4.
6.2.5.

Declaration,
1,7 10110101 E: 14703 1 (O N T T
Complex Numbersin PASCAL
Records as Elements of an Array
Records with Structured Components

The Record with Variant Data Type

6.3.1.
6.3.2.
6.3.3.
6.3.4.
6.3.5.

Declaration
Manipulation,
Representationc......
FORTRAN Equivalent of the Variant Record . . .
Fixed and Variant Records

Packed Structures

6.4.1.
6.4.2.

Stringsin PASCAL
Strings in FORTRAN

Case Study: Poker Hand Analysis....................
Summary
BRCTCISES s 555505 005 5 505515515 5055 505 5505165 enmn 3 66 0 30 o s mim

...

53
57
60
62

64
64
65
71
73
73
80
86
86
91
96
98
101
102

106
106
107
109
111
116
116
120
122
122
124
127
128
129
131
132
133
135
136
139
140
147
148

7.

Contents

SUBPROGRAMSottt it iieteenenrnenennnnns
7.1, INtroduction.ocesemosasavsssmnsssinsssssass
Ts2y PUNCHONS wsmss0smsismsmmsns 5 smmims dn s e memaeas
7.3. Procedures (Subroutines),
7.4. DataSharing, s ms s E
7.5. Case Study: FORTRAN Static Analyzer
7.6. ReCUISIONciiiiiiiiiiiin i,
7.7. Case Study: Eight Queens’ Problem
7.8. SideEffectsc.coiuiiiinii .
7.9. Functional and Procedural Parameters
TodOu SUBATY & 56 5550516505 555 5005 160t 100 o010 0 050t o0 e 00 1

|, (<3 o L U

ADVANCED DATA TYPES: SETS, FILES AND

POINTERS 506 5506 006555 5 65505 66 6 606 10010 0100 050 0 10 w52 0 0 15 076 5 810
8.1 SEES 0 6141555 506 6 6m mrmimre e ot v o e 0 s e 6 8 S5 A 6
8.1.1. Definition and Construction..................
8.1.2. Set Arithmetic..............................
8.1.3. SetTesting.........oouvuuunneenninnnni.
8.1.4. Case Study: PrimeFinding
B2, TEHICS i 155 0515 555050505 50 & 1 et o oo o s o 0 S B 5 8 6
8.2.1. Definition
8.2.2. OperationsonFiles
8.2.3. ExternalFiles
8.2.4. CaseStudy: FileMerging
83. Pointers
8.3.1. Definition and Manipulation
8.3.2. Linked List Structures
8.3.3. Recursive Data Structures....................
84, Summary
EXErCisesot e
FURTHER INPUT ANDOUTPUToovvvvnnnnnnn..
9.1. Standard Textfiles 0o ..
9.2. Example: Text Processing
9.3. User Defined Textfiles
9.4. User Defined Non-Textfiles
9.5. FORTRAN File Control Facilities....................
9.6. Summary
Exercises ...

vii

152
154
161
167
178
184
190
194
196
198
199

viii Contents

10. PASCAL: COMMENTS AND CRITICISMS 273
10.1. Data Definitions and Declarations 273
10.1.1. Identifiersccovieeeneernenenncnenns 273

10.1.2. Constantsc.oueiueinennerneenneanns 274

10.1.3. Data Typescvviiiiii it iii i 274

10.1.4. Type Compatibility 2175

10.1.5. The Variant Record . . .c:cosnsmmsasensmesmsios 275

10.1.6. The Pointer TYDE s :vssninsinsnnimsmnsmssssns 276

10.1.7. The FileTYDE «.ccsusissasinionimssssnsimsms 276

10.1.8. Parameterscuiuinuennennennennns 276

10.2. Statementsc..oiiitiiiiii e 278
10.2.1. Program Layout................cocvnenn... 278

10.2.2. Punctuationcoviiiuiniennanan.. 279

10.2.3. Assignment Statement 279

10.2.4. Compound Statement 279

10.2.5. Selection StatemMentscosswsvasssmoses 279

10.2.6. Comment Convention 280

10.2.7 ForStatement..............c.ovuivunieunnnn.. 281

10.2.8 Goto Statement 281

10.3. Input/Output Facilities............................. 281
10.4. Portability i 282
10.5. LibraryFacilitiescciiiiiiiiinnn.. 282
10.6. Compile-Time and Run-Time Checks................. 283
10:7 SUMTOATY 55 ssmsismsmpa s s masesmaFHsemissandsoene 285
APPENDIX A: Standard Procedures and Functions 286
APPENDIX B: TheSyntaxof PASCALccvun.... 293
APPENDIX C: The Syntax of FORTRAN 307

Chapter 1

HISTORICAL OVERVIEW

1.1 THE HISTORY OF FORTRAN

In the early days of programming, before 1954, most programs were
constructed in machine language or assembly language. The task of the
programmer involved not only finding a solution of the problem under
consideration but also involved contending with the characteristics of the
machine. The hardware was regarded as the most important component in the
programming process because of its expense. A high percentage utilization of
this expensive piece of equipment was expected, and many programmers were
prepared to invest time and energy to achieve this.

At that time, the attempts at introducing some form of high level language
had not been encouraging. The claims made for such systems did not measure
up to their actual performance. This led to the widespread belief, within the
programming community, that efficient programming could not be achieved
by using a high level language translator or compiler.

This situation might not have changed but for the fact that the cost of
programming (programmers) began to equal the cost of the computer itself. In
addition, a large proportion of the computer’s time was being spent in simply
debugging programs. These factors began to work in favor of high level
language programming.

It was into this environment that John Backus of IBM in 1953 /54 proposed
the introduction of FORTRAN. A major concern of the FORTRAN team
was, therefore, to demonstrate that a system could be built which would
produce programs as efficient as hand coded programs and for a wide range of
submitted programs. Only in this way would the largely hostile and skeptical
programming community be convinced of the benefits of such a language.

Backus[1]felt thatif their system translated a program which executed only
half as fast as an equivalent hand coded program, then their translator would
not be accepted. Hence, the design of the translator was the real challenge, not
the task of designing the high level langauge.

1

2 Historical Overview

In retrospect this was a good decision, otherwise the introduction of high
level language programming would have been seriously delayed. Backus’
description of the early days of the project indicates that the features of the
FORTRAN language were made up as the project progressed. Language
design was not considered to be the major problem. Rather the construction
of the translator or compiler was considered to be the major problem. The
name of the language, being an abbreviation of ‘FORmula Translator’, reflects
much of the thinking on language design at that time.

FORTRAN was intended for a particular IBM machine and was never
envisaged as being available on any other machine. Thus, it was felt that
including features in the language which made the task of translation easier
was acceptable. Hence, the approach to language design was casual in the
sense that features were included or dropped as the project proceeded.

FORTRAN, therefore, had the objectives of making programming on the
IBM 704 computer much faster, cheaper, and more reliable. As a conse-
quence, the language reflected the hardware constraints of the IBM 704. No
special provisions were made for program debugging, as it was assumed
optimistically that FORTRAN would eliminate debugging.

It was also assumed that other manufacturers would provide their own
similar language on their machines. As it turned out, in order to compete with
IBM, the other major computer vendors decided to provide a FORTRAN
compiler for their own machines. Their versions of FORTRAN usually
included extensions which were tailored to their own hardware.

The description of FORTRAN [2] and its translator program was pres-
ented in February 1957 at the Western Joint Computer Conference in Los
Angeles. Only at this stage was widespread interest shown in FORTRAN at
other IBM 704 sites. By 1958 there were some 66 IBM 704 computers in
operation which were using FORTRAN.

Thus, FORTRAN was the first high level language introduced on a large
scale. It proved the viability of using a high level language to solve many
problems. However, the spread and acceptance of FORTRAN was not with-
out resistance. The majority of programmers at that time saw no reason to
change because they felt that machine code was the best way to obtain efficient
use of a computer. Also, it takes time and effort to learn a new language and a
lot of courage to abandon working programs or to start a project in a new
language, especially when there is no obvious guarantee of improvement or
success.

In 1962, a working group (X3) of the American National Standards Insti-
tute (ANSI) was given the task of producing a specification of FORTRAN.
ANSC-X3 produced two documents known as FORTRAN and Basic FOR-
TRAN, with the latter language being a subset of the former. We will refer to

The History of Pascal 3

these documents as FORTRAN 66. This Standard was subsequently accepted
by the International Standards Organization (ISO).

Some of the main considerations of the standardization committee were to
facilitate the movement of programs between machines and to insure that the
language would be upward compatible with previous versions of FORTRAN.

A compiler writer was free to add other features to the language provided
the rest of the features still remained within the Standard. Many manufactur-
ers took advantage of this flexibility which probably resulted in the spread of
FORTRAN. Manufacturers were able to incorporate features which their
particular hardware was good at exploiting.

In April 1978 the earlier Standard for both Basic FORTRAN and FOR-
TRAN was withdrawn and a new Standard approved [3]. This is widely
known as FORTRAN 77. It also contained two parts, FORTRAN, and a
subset FORTRAN. Any program written in the subset would execute when
submitted to a compiler for the full language. It is the full FORTRAN 77
language which has been used in the following chapters.

FORTRAN 77 tried to maintain upward compatibility with FORTRAN 66,
where possible. A feature of FORTRAN 66 would only be eliminated if
there were good reasons for doing so. Several changes were also made to
encourage portability; for example, the Hollerith constant was replaced by the
character data type.

The FORTRAN 77 Standard is approximately 200 pages in length, much
larger than the earlier Standard. The increased size was intended to make the
document easier for users to understand and at the same time to give a
compiler writer more freedom. FORTRAN 77 can still include extra features
provided it executes programs adhering to the Standard.

FORTRAN in its original form was a simple language which was easy to
learn and efficient to implement. The interaction of its features was well
understood, but the regular addition of new features as each new version was
produced has undermined these properties. FORTRAN is now a large lan-
guage with few means of structuring data, but with many features whose
interaction in some instances is ambiguous.

This ambiguity has given rise to different interpretations by different imple-
menters, which have made the movement of programs between different
processors more difficult.

1.2 THE HISTORY OF PASCAL

In 1957 as a result of pressure from user groups, John Carr I11, President of
the Association for Computing Machinery, appointed a committee to estab-

4 Historical Overview

lish a universal programming language. There was to be collaboration with a
European Committee (GAMM) which was already engaged in a similar task.
It is interesting to note that FORTR AN was regarded as unacceptable for this
language as it was the property of IBM.

The deliberations of this group produced the algorithmic language known
as ALGOL 60. Unlike FORTRAN, the design and development of this
language proceeded in parallel. The syntax (grammar) and semantics (mean-
ing) were described in a report which used a special notation to describe the
syntax. This notation or metalanguage is known as the Backus-Naur Form[4].

ALGOL 60 made little impact in the United States but was more successful
in Europe. As the years passed and implementations of ALGOL 60 became
available, a successor to ALGOL 60 known as ALGOL 68 was produced.
ALGOL 68 turned out to be a controversial language in that many people
regarded it as too complex. As a result, Niklaus Wirth of Eidgenossische
Technische Hochschule in Zurich embarked on the design and implementa-
tion of what we now know as PASCAL.

Wirth had designed and implemented at least two other languages before
commencing his work on PASCAL. He was, therefore, one of the leading
authorities on the design and implementation of programming languages. He
had started to name his languages after mathematicians, hence the choice of
the name PASCAL.

There were two principal aims in the development of PASCAL [5]:

i) to make available a language suitable to teach programming as a syste-
matic discipline based on certain fundamental concepts clearly and naturally
reflected by the language (structured programming),

ii) to develop implementations of this language which are both reliable and
efficient on presently available computers.

The language benefited from the experience gained in the design and use of
other high level languages:

i) by identifying what is missing, and what is necessary,
ii) by using more modern techniques to produce a reliable and efficient
compiler.

The first version of PASCAL was drafted in 1968 with the first compiler
available in 1970. Wirth initially intended, in order to ensure the portability of
the compiler, to use FORTRAN as the implementation language. However,
the program and data structures of FORTRAN were inadequate for such a
task. Eventually, PASCAL was implemented using PASCAL as the imple-
mentation language [6]. After two years experience with the language some
minor modifications were introduced.

References 5

The substantive publication and the one that we shall refer to frequently is
the PASCAL User Manual and Report [T] which consists of a tutorial on the
language as well as a formal report. It is this document which has been widely
used as a reference document for the implementers of the language.

In 1973 Hoare and Wirth [8] attempted a formal definition of the semantics
of PASCAL. This enabled areas of uncertainty and ambiguity to be identified
and slight revisions to be made.

In 1977 a working group within the British Standards Institute [9] was
formed to produce a standard for PASCAL. Their deliberations have since
been widely distributed in the computer literature. Their proposed PASCAL
Standard is now in the process of being accepted by the International Stan-
dards Organization [10]. This document will be frequently referred to in the
text.

PASCAL gained widespread acceptance as a teaching language to illustrate
the concepts of structured programming, and soon it was being used in other
application areas. It is currently being offered by most of the major manufac-
turers and on many small machines.

PASCAL is a simple language with few features, eight data types and nine
control structures whose interaction or combination is well understood. Roth
the data and control structures can be developed hierarchically. The fact that
PASCAL has few machine dependent features has enabled the movement of
programs between different machines to be relatively easily achieved.

One other major development has been the introduction of the program-
ming language Ada! by the US Department of Defense [11] for use on its
embedded computer systems. Of the four proposed languages which were
submitted, all four chose as their base language PASCAL. PASCAL is,
therefore, a prerequisite to understanding Ada.

References

[1] Backus, J.W., “The History of FORTRAN I, Il and I11”, in The History
of Programming Languages, R.W. Wexelblat ed., Academic Press, Los
Angeles, 1981

[2] Backus, J.W. et al, “The FORTRAN Automatic Coding System”, in
Proc. Western Joint Computer Conference, Los Angeles, 1957.

[3] American National Standard Programming Language FORTRAN

(ANSI X3.9-1978), New York American National Standards Institute
Inc., 1978.

!Ada is a registered trademark of the US Department of Defense.

6 Historical Overview

[4] Naur, P., “Revised Report on the Algorithmic Language ALGOL 60,
Comm ACM 6, (1) 1963, 1-17.

[5] Wirth, N. “The Programming Language PASCAL”, Acta Informatica
(1), 1971, 35-63.

[6] Wirth, N., “The Design of a PASCAL Compiler”, Software— Practice
and Experience (1), 1971, 309-333.

[7] Jensen, K. and N. Wirth, PASCA L User Manual and Report, Springer-
Verlag, New York, 1978.

[8] Hoare, C.A.R. and N. Wirth, “An Axiomatic Definition of the Pro-
gramming Language PASCAL”, Acta Informatica (3), 1973, 335-355.

[9] Addyman, A.M. et al. “A Draft Description of PASCAL”, Software—
Practice and Experience (9), 1979, 381-424.

[10] Computer Programming language PASCAL, ISO Draft International
Standard (DIS) 7185, International Organization for Standardization
1982.

[11] Reference Manual for the Ada Programming Language, Washington,
D.C., US Department of Defense, November, 1980.

Chapter 2

STRUCTURED PROGRAMMING

2.1 PROGRAM DESIGN

In this chapter the topic of program design and construction is considered.
The method described forms the basis for the design and construction of the
programs used in the case studies of the following chapters. This method is
known as structured programming or stepwise refinement, and it is a tech-
nique which is independent of the programming language used. It has been the
increasing cost of program construction, the suspect reliability, and the
difficulty of adapting programs which has led to the spread and acceptance of
techniques such as structured programming.

The design and construction of a solution by means of a program involves
several distinct phases. In the case of a small program many of these phases
may be carried out subconsciously by the programmer. However, if we think
“big” and regard ourselves as embarking on a project which will take many
years to complete and which involves many programmers, then each of the
phases requires individual specification.

In the latter situation we can list the following phases as being involved in
the production of the final product:

1) Definition. A clear and precise definition of the actual problem must be
given and understood.

if) Choice of algorithm. An algorithm must be chosen, perhaps from a set of
algorithms, as the most appropriate to use. In fact, a choice of algorithm may
be required at various stages of the solution.

iii) Choice of programming language. Ideally a programming language
should be chosen which has the most suitable program and data structures.
However, the number of programming languages available at an installation
or mastered by the programmers involved will be limited so that this phase
may not involve a major decision.

