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Editorial Policy

§ I. Lecture Notes aim to report new developments - quickly, informally, and at
a high level. The texts should be reasonably self-contained and rounded off. Thus
they may, and often will, present not only results of the author but also related
work by other people. Furthermore, the manuscripts should provide sufficient
motivation, examples and applications. This clearly distinguishes Lecture Notes
manuscripts from journal articles which normally are very concise. Articles
intended for a journal but too long to be accepted by most journals, usually do not
have this “lecture notes™ character. For similar reasons it is unusual for Ph. D.
theses to be accepted for the Lecture Notes series.

§ 2. Manuscripts or plans for Lecture Notes volumes should be submitted
(preferably in duplicate) either to one of the series editors or to Springer- Verlag,
Heidelberg . These proposals are then refereed. A final decision concerning
publication can only be made on the basis of the complete manuscript, but a
preliminary decision can often be based on partial information: a fairly detailed
outline describing the planned contents of each chapter, and an indication of the
estimated length. a bibliography. and one or two sample chapters - or a first draft
of the manuscript. The editors will try to make the preliminary decision as definite
as they can on the basis of the available information.

§ 3. Final manuscripts should preferably be in English. They should contain at

least 100 pages of scientific text and should include

- a table of contents;

- an informative introduction, perhaps with some historical remarks: it should be
accessible to a reader not particularly familiar with the topic treated:

- a subject index: as a rule this is genuinely helpful for the reader.

Further remarks and relevant addresses at the back of this book.
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Preface

The subject of these notes does not have a long history. It takes its origin from
the very short paper published by Kubota in 1965. Let F' be a totally imaginary
algebraic number field containing the full group of m'® roots of 1, denoted by
oy (F), and let I‘é;’i)nc(q) be the principal congruence subgroup module ideal ¢

in SL(n, Of), Op being the integers ring of F'. Kubota showed [51] that, under
some conditions on ¢, the reciprocity low yields

a b i) if ¢#0
(¢ 3)- <d ife#
1 if ¢c=0
is a group homomorphism F;fi)nc(q) — p,,(F); here we write (—)m for the m'h
degree residue symbol. This theorem has very far-reaching consequences.

In a series of papers [52], [563], ..., [67] Kubota studied automorphic forms
under the group F;f-l)nc(q) with the homomorphism above as a multiplier system
(= a factor of automorphy), the so called metaplectic forms of degree m. That
are real analytic forms, in the sence of Maaf} and Selberg, defined on H", where
H ~ SL(2,C)/SU(2) is the 3-dimentional hyperbolic space, and r is the num-
ber of complex places of F'. The metaplectic Eisenstein series are of particular
interest. Their Fourier coefficients are the Dirichlet series whose coefficients are
the Gaufl sums of degree m. The general principles yield then that these Dirich-
let series have meromorphic continuations and satisfy some functional equations.
This remarkable observation gives the key to solve Kummer problem [37].

Taking the residues of the metaplectic Eisenstein series at some ‘exceptional’
poles Kubota constructed metaplectic forms which it is reasonable to consider
as m'" degree analoques of the classical quadratic theta function. In particular,
taking F' = Q(v/=3), ¢ = (3) and m = 3, we get the cubic theta function
O, H — C. Patterson [69] could find an explicit form for its Fourier expan-
sion. We refer ©, , as the Kubota-Patterson cubic theta function, it playes a
crucial role in these notes. For m > 4, Fourier coefficients of the m'™® degree
theta functions are not known yet. Some particular results were obtained by
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Suzuki [94] and by Eckhardt and Patterson [20] for the biquadratic theta series,
i.e., for the case m = 4. Patterson considered also the case m = 6. It seems
reasonable to think that unknown Fourier coefficients of the m'® degree theta
functions, m > 4, could be treated as Gaufl sums in some extended sence, in
this connection see [72], [73].

One more line of thought relates the Kubota homomorphism with the con-
gruence subgroup problem. The relation becames clear if we notice that the ker-
nel of the Kubota homomorphism is the subgroup of finite index in SL(2, Of),
and that it does not contain any principle congruence subgroup. To deal with
the congruence subgroup problem in more general context, Bass, Milnor and
Serre [5] constructed homomorphisms extending Kubota’s one.

Due to Bass, Milnor and Serre, we have homomorphisms I“é?i)nc(q) — p(F),
n > 2, and we can treat them as multiplier systems to define metaplectic forms
on spaces others than that considered originally by Kubota. This is just the
point of view accepted by the author in the series of papers [78], ..., [84] and
in the present notes.

In other words, the metaplectic forms we define and deal with are ‘classical’
but not ‘adelic’ ones. The adelic point of view was accepted by Kubota in [54]
and then by Deligne [18], Flicker [27], Kazhdan and Patterson [46], [47], Pat-
terson and Piatetski-Shapiro [74], Flicker and Kazhdan [28]. In this framework
metaplectic forms are treated as adelic automorphic forms defined on metaplectic
groups.

These notes are organized into three parts.

Part 0 contains essentially known material (except that in subsections 0.3.14
and 0.4.3). Writing Part 0 we had in mind to prepare the necessary background
for our research in the forthcoming two parts, and also to gather together the
main results concerning the cubic metaplectic forms on H given by Kubota and
by Patterson, which one can find yet in original papers only. The contents of
Part 0 is described in details in subsection 0.1.1.

In Part 1 and Part 2 we study cubic metaplectic forms on the symmetric
space X ~ SL(3,C)/SU(3) and, respectively, X ~ Sp(4,C)/Sp(4). These two
parts are independent one from another. For SL(3, C)-case our results are more
complete and our exposition is more detailed rather than that for Sp(4, C)-case.
In the meantime, Part 1 and Part 2 have entirely similar structure, and this
should emphasize the similarity of the methods. In both cases, given a cubic
metaplectic form f: H — C, we have the Eisenstein series E(-,s; f): X — C,
s € C, attached to f in accordance with the general Eisenstein series theory.
Our primary goal is to find their Fourier coefficients. For this we apply specific
‘sl(2)-triples technique’ developed in [81], [82] and [84]. Then we consider one
particular case f = ©, .. The series E(-,s;©, ) are very interesting metaplec-
tic forms. We find they have some ‘exceptional’ poles, and, taking residues, we
get cubic theta function © on SL(3,C)/SU(3) and two cubic theta functions,
©, and ©,, on Sp(4,C)/Sp(4).

The function © on SL(3,C)/SU(3) has been constructed by the author [78]
and by Kazhdan and Patterson [46]. This theta function, as well as ©, ., occurs
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in [46] as particular representative of a wide class of theta functions defined on
metaplectic coverings of the general linear groups. The Fourier coefficients of ©
were evaluated in [78]. The technique used in [78] is not perfect, and this is one
reason to review [78] again, in order to simplify and clarify it.

Two cubic theta functions on Sp(4,C)/Sp(4), ©, and ©, in the notations
of these notes, were constructed in [80], [81]. One of them is the residue of the
Eisenstein series E(-,s;©, ) at the maximal pole, and it looks like symplectic
analogue of the theta functions described in Kazhdan-Patterson theory. The
second one, being the residue of E(-,s;0, ) at the second pole, has slightly
different origin. For better understanding it would be pleasureable to involve
both ©, and ©, into general symplectic metaplectic forms theory. We hope our
observations might by useful to develope such theory.

It should be pointed out that a lot of things we deal with 1n first four sections
of Part 1 as well as of Part 2 are not related to cubic metaplectic forms and theta
functions only. In particular, the basic theorems which give us expressions for the
Eisenstein series E(-, s; f) Fourier coefficients in subsections 1.4.1 and 2.4.1 are
valid for the Eisenstein series with almost arbitrary multiplier systems. Among
other such things, there is our treatment of Whittaker functions on the group
SL(3,C) in subsections 1.3.10, 1.4.7 and on the group Sp(4,C) in subsections
2.3.7, 2.4.7. We show that the integrals defining Whittaker functions can be
evaluated, that gives rise to simple and useful expressions.

In [84] we studied cubic metaplectic forms on the Lie group G,(C) of type
G,. There were found two ‘exceptional’ poles of the Eisenstein series E(-,s;0, )
on G,(C). Unfortunatly there are too many open questions concerning the theta
functions associated with these poles. For this reason, we do not include this
part of our research into these notes having in mind first to resolve at least some
of them and only then to overview the subject.

I would like to thank U. Christian, H. Helling, S. J. Patterson and D. Hejhal
for invitations to Gottingen, Bielefeld and Uppsala where 1 have worked sup-
ported by SFB-170, SFB-343 and Uppsala University. This work was supported
also by RFFI (grant 96-01-00663). I especially wish to thank S. J. Patterson for
his interest to my work and for stimulating encouragement over many years.



0.1
0.2
0.3
0.4

1.1
1.2
1.3
1.4
1.5

2.1
2.2
2.3
2.4
2.5

Contents

Part 0 1
Preliminaries . . ... ... ..o 1
Kubota and Bass-Milnor-Serre homomorphisms .................... 18
Cubic metaplectic forms and Kubota—Patterson cubic theta function .. 28
On Dirichlet series associated with cubic Gaul sums............ ... .. 54
Part 1 63
GEEUD SL(3,C) i ns cmoms v vmime smsmmemameemans 5E9s sMiEE (MERT 3FE7 63
Discrete subgroups ........... .. 67
Cubic metaplectic forms on X ~ SL(3,C)/SU(3) ................... 74
Eisenstein series Fourier coefficients ................ ... ... ... ...... 93
Eisenstein series E(o(-),s;©, ) and cubic theta function ........... 111
Part 2 126
Group Sp(4;C) :ssci cmsme smpmens ss smams swvms 105 smams sHiEs dHIEs s 126
Discrete subgroups . ...... ... 131
Cubic metaplectic forms on X ~ Sp(4,C)/Sp(4) .................. 141
Eisenstein series Fourier coefficients .............................. 151
Eisenstein series E(o(-),s; 0, ) and cubic theta functions .......... 172
References 188

Index 194



Part O

0.1 Preliminaries

0.1.1 Suggestions to the reader. 0.1.2 Notations. 0.1.3 Cubic residue symbol.
0.1.4 Arithmetic functions. 0.1.5 Dirichlet series. 0.1.6 Special functions.

0.1.1 Suggestions to the reader. We would like to give some commentary
on the present section and the whole Part 0, to save the time and effort of the
reader.

In subsection 0.1.2 we have collected some basic notations which will be
used throughout these notes. In subsection 0.1.3 we state the properties of the
cubic residue symbol. The next two subsections — 0.1.4 and 0.1.5, — contain
elementary facts on Gaufl and Ramanujan sums, some arithmetic functions, the
Dedekind zeta function Cq(v=3) and some cubic Hecke series. We only deal with
the field Q(v/=3), so prerequisited knowlege of the algebraic number theory is
not significant. We hope however the reader feels free with the computations
like that in 0.1.4. The most convenient source is the book of Ireland and Rosen
[41], where we find detailed description of the arithmetic of the field Q(v/=3),
including the proof of the cubic reciprocity low. That is all we need except some
facts on the Dedekind zeta function and Hecke series for which we can refer to
Weil [102]. For reference convenience, we give in subsection 0.1.6 the definitions
and some useful facts on special functions — the Euler gamma-function I", the
Bessel-MacDonald function K, the Airy function A¢ and the hypergeometric
functions ,F, and 3F,.

Section 0.2 begins, subsection 0.2.1, with the definitions of some congruence
subgroups of SL(n, Q). In the next subsections — 0.2.2,..., 0.2.5 — we present
the remarkable Kubota’s theorem and its generalization given by Bass, Milnor
and Serre. These theorems are of the fundamental importance for us. As to the
explicit formulae for the Bass—Milnor—Serre homomorphisms, given in subsection
0.2.5, they are not so important, and we shall not use them.

Section 0.3 is written as a short review of the theory of cubic metaplec-
tic forms on 3-dimensional hyperbolic space H = C x R} ~ SL(2,C)/SU(2).
By the cubic metaplectic forms are understood the automorphic functions with
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specific multiplier system discovered by Kubota. The material is taken in the
main from the works of Kubota [53], [54] and Patterson [69], [70], and includes
some new things, particularly in subsection 0.3.14. We give all necessary defini-
tions and statements, but only a few proofs. There is no book on this subject
yet, and our operating assumption is that our reader knows somethat the basic
concepts of the theory of automorphic functions on complex upper half-plane,
including Maaf} theory of real analytic automorphic functions. This knowlege
would be very helpful for a complete understanding of our exposition. (We can
recommend Koblitz [50], Shimura [91], Kubota [58], Venkov [99].) The classical
complex upper half-plane is nothing but 2-dimensional hyperbolic space and
it can be understood also as SL(2,R)/SO(2). It is not a wonder that a lot
of things go on SL(2,C)/SU(2) quite similar to that on SL(2,R)/SO(2). The
main difference is that SL(2,C)/SU(2) is not a complex analytic manifold, but
only a real analytic one. For this reason the automorphic functions one can
define on SL(2, C)/SU(2) are analogues of the Maafl wave forms, but not of the
classical analytic automorphic forms. Certainly, the theory of the automorphic
functions on SL(2, C)/SU(2) can be viewed as a part of the general automorphic
functions theory developed by Selberg [87], [88], Harish-Chandra [32], Langlands
[59], Jacquet [43] and others, and such viewpoint leads to better understanding.
(We can recommend Baily [2].)

To demonstrate the importance of the cubic metaplectic forms theory for the
number theory, we collected in Section 0.4 some of its consequences concerninig
the Dirichlet series whose coefficients are the cubic Gaufl sums and the squares
of the cubic Gauf} sums.

0.1.2 Notations. Z, Q, R, C are the ring of rational integers, the field of ra-
tional, the field of real and the field of complex numbers; C* is the multiplicative
group of C; R} is the multiplicative group of real positive numbers.

R(z), S(z), |z| are the real part, the imaginary part and the absolute value
of z € C; % is the complex conjugate of z and e(z) = exp(2mi(z + 2)).

For z € C\ (—00,0] and s € C we write z° for exp(slogz), log being the
principle logarithm, i.e., logz € R for z € R}.

ty is the matrix transpose to 7, e, is the identity matrix n x n, and
diag(ey,¢y,...,¢,) is n x n diagonal matrix with ¢; at the intersection of ith
row and i*" column.

All integrals we shall deal with are intergals over the standard Lebesgue
measures on R or on C, and it will be easy to distinguish one case from another
just from context.

We shall use standard notation SL(n,C) for the special linear group of
order n over C, and SU(n) for the special unitary groups of order n,

SU(n) = {k € SL(n,C) | k% =, }.

Sp(4, C) will denote the symplectic group of rank 2 over C, see 2.1.1 for the

definition.
O = Z[w] is the ring of integers of the field Q(v/-3),

w =exp(2mi/3) = (-1 + \/—_3)/2
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[I-1l: Q(vV—3) — Q is the norm, ||z|| = 2% for all z € Q(v/-3).

By ¢ we mean an ideal of O, also considered as a lattice in C. Then, C/q
is a fundamental domain of the lattice ¢ in C and vol(C/q) is its volume (with
respect to the Lebesgue measure on C). We shall assume that ¢ C (3) and
g # 0. The fractional ideal dual to ¢ is

:{CEQ(\/—_3)|(cd+c_d)€Zforalld€q}.

One can describe g¢* a]so as the set of all ¢ € Q(v/=3) such that e(cd) = 1 for
alldeq. If g=(r ) , q is generated by 7 € O, then vol(C/q) = V3||r||/2,
and ¢* = (vV/=3r)"!

Given l€ O and A,B C O, we write [A for the set {la|a € A}, [+ A for
the set {{+a|a€ A}, and A+ B for theset {a+b|a€ A, be B}.

We recall [11], [41] that O is a ring of principal ideals with the Euclidean
algorithm and with a unique factorization of the elements into prime factors. Its
group of unitsis O = {¢( € C* | (®* =1} = {£1,4+w,+w?}. One can represent
each element k£ € O, k # 0, uniquely as the product

k=¢(V-3)"c (0.1.1)

with (€0, me€Z, m>0,c€ 0, c=1 (mod 3).

O, 1s the subset of O consisting of 0 and of the numbers k € O with ( =1
in factorization (0.1.1). Sometimes we shall not make a distinction between an
ideal of O and its generator in O,,. For each prime p € O, there exists a
unique prime p’ € O, which is associated with p. Certainly, p’ = 1 (mod 3)
or p’ = +/=3. Throughout these notes, by primes in @ we shall mean primes in
O, only. With this agreement, for each prime p we have either p = 1 (mod 3)
or p = v/—3, and sometimes we write p = 1 (mod 3) only to exclude from the
consideration /—3.

As usual, if a,b € O, a # 0, then a|b denotes that a divides b; afb
denotes that a does not divide b; a|b™ denotes that a|b" for some rational
integer r > 1.

For ¢ € Q(v=3)\ {0} and prime p € O we denote by ord, ¢ the rational
integer ¢t such that ¢ = p'ab~! with some a,b € O, pfab. Sometimes we
write p|c instead of ord,c > 1, and p* || ¢ instead of ord,c = t. We set also
ord, 0 = oo

We shall use | and | also in a little more general context than it is de-
scribed above. For a € O\ {0} and b € Q(~/=3):

a|b means that, for each prime p, if ord,a > 1, then ord, b > ord, q;

a} b means that there exists prime p so that ord,a > 1, ord, b < ord, a;

a | b means that, for each prime p, if ord,a > 1, then ord, b > 1.
Certainly, for b € O these definitions coincide with those given before.

For CiyeesCp € O let k € O, be so that, for each prime p, ord, k=
min{ord,c; | j = 1,...,n}. We say that k is the greatest common d1v1sor
of ¢;,...,¢c, and denote it as ged(cy,...,c,). In some cases we have a,b €

Q(v/—3) and we have to say that there is no prime p € O such that both
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ord,a > 0 and ord,b > 0. For this we shall write gcd(a,b) = 1. Certainly,
this coincides with usual ged(a,b) =1 (as defined above), if it so happens that
a,b € O, and thus this will not lead to misunderstanding.

We say that & € O\ {0} is square-free if k is of the form (0.1.1) with
¢(==%1,m=0,1and ord,c <1 for all prime p =1 (mod 3). Eeach { € O\ {0}
can be factored as | = kr? with square-free k, uniquely determined by !, and
with » € O\ {0}.

We say that £k € O\ {0} is cube-free if k£ is of the form (0.1.1) with
¢ =1,ww? m=0,1,2 and ord,c¢ < 2 for all prime p = 1 (mod 3). Each
1€ O\ {0} can be factored as | = kr® with cube-free k, uniquely determined
by I, and with » € O\ {0}.

We say that [ € Q(v/=3) is a cube, or is a cube in Q(v/=3), if [ = r* with
some r € Q(v/=3). Clearly, if | € O is a cube in Q(v/=3), then | = r® with
r € O, and this case we can say [ is a cube in O.

Let c € O\ {0}. A set ¢(c) C O is said to be a complete residue system
modc if it contains a unique representative of each residue class mode. It is
sald to be a reduced residue system mod ¢ if it contains a unique representative
of each residue class mod ¢ coprime with ¢. We shall use script gothic letters to
denote residue systems.

For short, we shall write sometimes a = b (c) instead of a = b (mod ¢).

0.1.3 Cubic residue symbol. If ¢,d € O, gcd(3c,d) =1 and d = epy’*. . .p;/"
is the canonical factorization into prime factors, € € @*, then we set

@)-1G)

where, for prime p = 1 (mod 3), the symbol (%) is equal to ¢ € C* uniquely

determined by the conditions

¢*=1 and ""V3=¢ (modp) with 7=]|p]|.
(The multiplicative group of the ring O/(p) has order 7—1, and it contains the
cyclic subgroup of order 3 generated by w. This yields ¢’~! = 1 (mod p) and
7 —1=0 (mod 3), and so, the ¢ required exists.)

The cubic residue symbol (—) has the following properties.

@ wambd, v (3)=(5)
® (3=
o (9)=()():
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d
(d) If ¢,d= £1(3), then (%) = (?) (the cubic reciprocity law);

(e) If w=exp(27i/3) and d = ((1+3(m+nw)), ( € O*, m,n € Z, then

(5)=om ()=

(the supplement to the reciprocity law);

C

(f) 1f a=b(c) and a = b(9), then <%> - <T>;

© ()=t

(h) If ¢,d € Z, then (%) = 1.

The cubic resiprocity law (d) and the supplement (e) are known due to Eisenstein
(21], [22], [23]. Other points are rather simple. See [41], [34], [17].
Throughout these notes we shall assume that

(%):1 for de O, ged(d,3)=1,

and sometimes we shall write for simplicity

(5) it (£)(3)

if ¢ = a/b with a,b € O and gcd(ab,d) = 1. We hope, there will not be
misunderstandings, though these agreements are not commonly used.

We shall use the residue symbol very often. At first we shall try to point
out explicitly which of formulae (a),..., (g) we need, but then, we hope, this
will not be necessary.

0.1.4 Arithmetic functions. For ¢ € O\ {0} we define

1. : ’ . 53

ji(c) = { (-1) ¥f c ?s square-free with ! prime divisors, (hiBhiis fanstion),
0 if ¢ is not square-free

¢(c) = Z 1 (Euler’s totient function), (@12}

k€ec(c)

where ¢(c) is a reduced residue system modc. We have used ~ in the notations
to emphasize the functions above are attached to the ring O (but not to Z),
and to save the letters p, ¢ for other purposes.
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One says that a function f: Q2 — C, 2 being a subset of O, is multiplicative
if ab € Q and f(ab) = f(a)f(b) for all a,b € Q with gcd(a,b) = 1. One can
easily find the functions defined in (0.1.2) are multiplicative.

For A € ¢*, ¢ C (3), c €1+ ¢ let us write

C(A )= Z e(Ak/c) (Ramanujan sum),
kec(c)

She)= Y, (%)e(/\k/c) (GauB sum),

k€c(c)

(0.1.3)

where ¢(c) is a reduced residue system modc, which we can, have and do as-
sume to be a subset of q. Next, if ¢/ € O can be represented in the form [d>
with 1| ¢, ged(d,3) =1, [,d € O, then we set

SAecd)= Y (%)(%)e()\k/c) (Gauf§ sum), (0.1.4)

kec(c,c’)

where c(c,¢’) C ¢ is a reduced residue system modc composed of numbers
coprime with ¢/. Notice that S(A,1,¢') = 1 if ¢/ = d® with some d € O,
ged(d,3) = 1, and that S(X,1,¢) is not defined for other ¢’. For A, ¢ as above
and ¢ € ¢ we set

S.(Aa= Y (%)e(/\k/c) (GauB sum), (0.1.5)

k€c(cq)
k=1(3)

where ¢(cq) is a reduced residue system modcq.

Notice that the terms in all the sums in (0.1.3), (0.1.4), (0.1.5) do not
depend on the choice of reduced residue systems involved in their definitions.
The sums S, (), c¢) depend essentially on the ideal ¢ involved. The sums in
(0.1.3), (0.1.4) do not depend on ¢ in a sense that whichever the ideal ¢ with
the properties ¢ C (3), A € ¢*, ¢ € 1 4+ ¢ is considered in their definitions, for
given X and c these sums are the same. One says A to be a parameter and c to
be a module of the sums (0.1.3), (0.1.4), (0.1.5), while ¢’ should be considered
as a supplementary module of the sum (0.1.4).

All the sums in (0.1.2), (0.1.3) are the sums of type (0.1.4). In fact we have

S(Ae) if ¢ is a cube,
S\ e,y =< C(Ac) ifec is a cube, (0.1.6)
@(c) if ec’ is a cube and A = 0.

Here are some elementary properties of the sums above:

@ &) =llell [ (1- —=);

ol lIpll

p is prime
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(e)

(f)

_ [ ¢(c) ifcisa cube,
5(0,¢) = { 0 otherwise;
C(A c165) =C(A,¢)C(A ep) if ged(eq,cy) =1;
C(6A,c)=C(A,c) if 6€ 0O, ged(d,¢) =1;
o(p*) if a<eg
For prime p = 1(3) one has C(p%,p®) ={ —||p||®”" if a=e+1,
0 fa>e+2

1S(1, Q)2 = { lle]] if ¢ is square-free,

0 otherwise;

c c
STA; £y 05, £765) = (giz) <ZI%,1—) 8l Xie, 8, Y5 Aseyich)
if ged(ey}, epch) = 1

For prime p = 1(3), if 6 =ord, A and X = Ap~%, then

( 1 if « =0, 8=0(3),
G(p*) if1<a<é at+p=0(3),
—lIpll®  ifa=6+1, a+B8=0(3),
IpIIPS(V,p) if a=6+1, a+p8=1(3)
eI’ S(V,p) if a=6+1, a+p=2(3),
0 in all other cases;!

8(X,p%p?) = 4

\

S(A,e,c¢’) #0 if and only if for each prime p = 1(3) one has either
ord,c = ord A+1 or 0<ord,c<ord,A, ordpc+ordpc' =0(3);

-1
S(6A,¢,¢) = (ci) S(Acc) if 6€0, ged(8,cc’) = 1;

CI

Let ¢ = (3) and A = £(V=3)™6, ¢ = e(v/=3)" with ¢ € O,
mleZ m>-3 1>2 6€0, § =1(3). Then, with j,k € Z
defined mod6 by e£~! = exp(wij/3) and € = exp(—mik/3), one has

-1

8.0, 0) = Be(ee~ (V=3)™) (@)
if l-m<3, k=1=0(3), or
l—m=4, 1:k+( 1Y =0(3), or
l—m=51=(=17(3), k=(-1)j(3),
and S,(/\,c)—O for all other j,k,I, m.

! Notice however that S(), p%, p?) is not defined fora=0,f % 0 (mod 3).



