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Preface

When viewing the number of linear system texts available to students and
teachers, any author adding to this collection must feel a need to justify his
work. This text grew out of several editions of classroom notes which we
developed for a senior-level course at the University of Colorado. While
organizing the course, we found no single text which covered the material
we thought important at a level suitable for undergraduate students. In
particular, material on discrete-time systems was scattered, and most texts
were either directed toward a particular type of system—such as electrical
circuits, control systems, or communication systems—or were arranged in a
topical order which the students found difficult to follow.

Our intent in writing this book is to present, in an organizational format
designed for the student, the basic general techniques for analyzing linear
systems. We treat both the usual continuous-time systems, and also discrete-
time systems, which are finding widespread use in modern communication
and control systems. The material is so ordered that the topics covered
reinforce one another. The student isled naturally from basic techniques of
time-domain analysis to the more abstract, although computationally simpler,
transform-domain techniques. Extensive use is made of examples to illustrate
the use of these techniques in solving problems in many diverse areas.
Several examples are treated using two or more techniques in order to aid
the student in comparing and relating the different solution methods. The
material is general, and is chosen to lead, if desired, into a second-semester
course in communication systems, control systems, or other areas which use
these basic techniques in specific advanced applications.

Prerequisites assumed of the student are a sophomore-level mathematics
course covering differential equations, and a course in the student’s major
area (such as electrical circuits or mechanics) which treats the derivation of
mathematical models of physical systems. A course in probability theory is
also helpful; examples and problems in the text which illustrate applications
to probability problems are identified with the symbol * and may be omitted
by those without this background.

This text is used for a one-semester elective course in linear system analysis
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vi Preface

at the University of Colorado. The course meets for a total of forty lecture
hours; in this time we cover most of Chapters 1-6 and some of Chapter 7 if
time permits. There is enough material in the text to give the instructor a
choice of emphasis. The following notes indicate, as a guide, how we treat the
various chapters.

Chapter 1 is covered rapidly, since for most students this is a review. The
classical solution of linear constant coefficient differential equations, involving
sums of functions of the type ce™, is readily extended to difference equation
solutions, with sums of sequences of the type cr*

Chapter 2 represents a departure from the usual order found in most
linear systems texts. We cover the concept of convolution for both discrete-
time and continuous-time systems in some depth. We feel that convolutional
methods are so important that they should not be avoided by the use of trans-
form methods. The convolutional sum for discrete-time systems and the
corresponding convolutional integral for continuous-time systems furnish
the student with a simple and effective way of picturing the operation of a
linear system. We introduce convolutional methods in terms of discrete-time
systems because the impulse sequence {d,} is easily defined and understood.
After covering discrete-time systems we progress to continuous-time systems.
In using convolutional methods for analysis of linear systems, the impulse
response sequence or function of the system must be known. We present a
method of calculating the impulse response sequence or function based
directly on the difference or differential equation modeling the system, whigh
is more general and usually simpler than the corresponding transform
methods.

The state variable material of Chapter 3 is included for two reasons: (1) the
larger, more complex systems now treated by control, power, and communi-
cation engineers require this compact general description; (2) computer
solution methods are well-suited to the matrix manipulation involved. Again,
we find that the solution of discrete-time problems is simpler and more direct,
and hence it is treated first. The solution of continuous-time problems then
follows quite naturally.

Chapter 4 is placed deliberately to introduce students to transform-domain
solutions. Since students are probably least familiar with Z-transforms, they
are not distracted by mechanical techniques (such as those they have used
previously with Laplace transforms) and can concentrate on the central ideas
involved in transforming from one domain to another. The analogous use of
logarithms discussed in the chapter introduction is useful in this respect.

Chapter 5 introduces transform methods for continuous-time systems by
considering the Fourier series and Fourier integral as methods of representing
continuous-time functions. The generalized Fourier series is covered in depth
in order to suggest why one might wish to have alternate representations of
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functions available. Walsh functions, for example, are shown to represent
rectangular waveforms more ‘‘naturally”’ than the usual sinusoids. The -
Fourier transform is introduced as a generalization of the exponential
Fourier series. The properties of the Fourier integral are introduced, pointing
out the similarity with the Z-transform properties, and these properties are
then used to obtain transforms of ‘“‘energy signals” and then so-called
“power signals.”” Power signals are time functions which are not absolutely
integrable but do have finite power. By using the definition of the impulse
function and the properties of the transform, one can easily generate very
useful transform pairs for power signals, with a minimum of ‘‘hand-waving”
arguments. Chapter 5 concludes with a discussion of the discrete Fourier
transform as a method of numerically calculating the Fourier transform by a
digital computer. Throughout the chapter we emphasize the physical nature
of the transform by the use of examples taken primarily from communication
theory applications. _

Chapter 6 continues the discussion of transform methods for continuous-
time signals by considering the Laplace transform. The Laplace transform is
presented as a generalization of the Fourier transform. Both the bilateral and
one-sided transforms are covered. In order to emphasize the unity inherent in
transform methods, several examples are worked using both the Fourier and
the Laplace transforms. These examples serve to point out that in most cases
of a practical nature one does not need the Laplace transform, although
numerical calculations with the Laplace transform are in some cases less
complex. The Z-transform and the Fourier and Laplace transforms are
integrated through a discussion of sampled time functions.

Our main purpose in including Chapter 7 is to further illustrate the
relationships between continuous-time and discrete-time systems. In par-
ticular, we treat the problem of obtaining a desired continuous-time transfer
function through the use of a discrete-time system (a digital filter). This
chapter probably cannot be included in a one-semester course unless some
earlier material is omitted. However, after the material treating the equivalent
transfer function has been covered, students should be able to read through
the remaining sections without undue difficulty. Alternatively, this chapter
could be covered in a following semester or in a laboratory section.

Most new books have a way of building on the works of previous authors.
In our case we are indebted to those authors mentioned in the references.

During the preparation of this book we have had many discussions with
colleagues and graduate students. In particular, Min-Yen Wu and Jack
Koplowitz offered many comments on the manuscript. Comments by Henry
Hermes clarified many of our discussions in this book. The publisher’s
reviewers, John Thomas and Mac VanValkenburg, were most helpful.
Teaching this material over the past several years has been an exciting and
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rewarding experience, due in part to the interest ‘of our students. Their
suggestions and comments have improved the presentation markedly.

The typing was accomplished through the efforts of Mrs. Marie Krenz and
Miss Judy Price. Their efforts are greatly appreciated. Finally, we would like
to thank any kind readers who forward to us corrections and suggestions for
improvements in this book.

Denver, Colorado ROBERT A. GABEL
Boulder, Colorado RicHARD A. ROBERTS
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Linear Systems

1.1 INTRODUCTION

The study of linear systems has been an essential part of formal
undergraduate training for many years. Linear system analysis is important
primarily because of its utility, for even though physical systems are never
completely linear, a linear model is often appropriate over certain ranges of
application. Also, a large body of mathematical theory is available for
engineers and scientists to use in the analysis of such systems. In contrast,
the analysis of nonlinear systems is essentially ad hoc: that is, each nonlinear
system must be studied as one of a kind. There are no general methods of
analysis and no general solutions.

The analysis of a given linear system is often facilitated by use of a par-
ticular class of input signals or a particular signal representation. Thus it is
natural to include a study of signals and their properties in a study of linear
systems. In later chapters we shall find this study especially fruitful.

As engineers, we are interested not only in the analysis but also in the
synthesis of systems. In fact, it is the synthesis or design of systems that is the
really creative portion of engineering. Yet, as in so many creative efforts,
one must learn first how to analyze a system before one can proceed with
system design. This work is directed primarily toward the analysis of certain
classes of linear systems, although, because design and analysis are so
intimately connected, this material will provide a basis for simple design.

We can divide the analysis of systems into three aspects:

(1) The development of a suitable mathematical model for the physical
problem of interest. This portion of the analysis is concerned with ob-
taining the ‘‘equations of motion,” boundary or initial conditions,
parameter values, etc. This is the process wherein judgment. experience,
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4 Linear Systems

and experiments are combined to develop a suitable model. In some sense
this first step is the hardest to develop formally.

(2) After a suitable model is obtained, one then solves the resultant
equations to obtain soluticns in various forms.

(3) One then relates or interprets the solution to the mathematical
model in terms of the physical problem. It is to be hoped that the develop-
ment in (1) has been accurate enough so that meaningful interpretations
and predictions concerning the physical system can be made.

The primary emphasis of this work is on the second and third aspects
mentioned above. The first step is essential but is probably better and more
completely accomplished within a particular discipline. Thus, chemical
engineers will learn to write equations of motion for chemical processes,
electrical engineers for electrical circuits, and so on. After a model is ob-
tained, one can consider various techniques for its solution and provide a
basis for its mathematical interpretation.

Because linear models are so often used in all disciplines of engineering
and science, this material is very useful. Perhaps the best way to point this
fact out is to present examples from various physical problems. The only
drawback to this method is that the reader may not always possess the
necessary background to perform the first step in the analysis, to write the
equations of motion. This problem is to be expected. As one gains familiarity
with a given discipline, this first step becomes natural. Thus, without further
apologies, we shall attempt to give physical examples from many fields
without always attempting to develop a complete basis for the derivation of
the equations of motion for a given system.

This material is presented as a summarizing work which brings together
techniques and concepts that can be used to analyze a great variety of
physical phenomena. This unity that one obtains is most useful and satisfying.

1.2 DEFINITIONS

We are primarily concerned with linear systems apart from their
inherent physical structure. Thus, we often shall represent a linear system
schematically as a box with inputs ,(¢), z,(f),...,,(f) and outputs
1(2), ¥2(1), . . ., Y(¢) as in Figure 1.1. The inputs #,(¢),i = 1,2, ..., nand

X, (1) ——> ———y, )

x,(t) —————>  Linear |——> ¥, (t) x (1) Linear y
. system . > system

X (1) ————> F——y,.(t)

FIGURE 1.1

Schematic representations of a linear system.
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outputs y,(¢), j=1,2,...,m will, in general, be time signals: i.e., any
physical variables of interest which vary with time. For the moment, let us
focus on a single input, single output linear system. We shall consider
multiple input-output systems in detail in Chapter 3.

Definition of a Linear System

The word linear suggests something pertaining to a straight line
relationship. Thus, we might suspect that a linear system is one in which the
output is in some sense proportional to the input. That is, if z(f) gives rise to
y(t), then ax(t) gives rise to ay(f) for any constant «. In symbols, if

z(t) —> y(1)
then ‘
ax(t) — oy(?) (1.1)

This property, called homogeneity, is a property of all linear systems.
However, a linear system involves much more than (1.1). It must also possess
the property of superposition. That is, if

z, () — Y1 (1)
and
Zy(t) — Y5 (1)
then
zy(1) + z5(1) — Y1 (1) + y,(1) (1.2)

for some class of inputs {x(¢)}. A system is linear if and only if superposition
and homogeneity hold. We can combine (1.1) and (1.2) into a single equation.
We define a system to be linear if and only if

azy (1) + fry(t) — ayy (1) + Pya(1) (1.3)

where « and f are constants. A convenient notation for the arrows of
(1.1)-(1.3) is to use functional notation and represent the transformation of
inputs into outputs by

y(t) = H[z(1)] (1.4)

The system represented by (1.4) is linear if and only if H is a linear trans-
formation: i.e., H[ox,(t) + Pxy(t)] = aH[z,(t)] + fH][x,(t)] Although the
property of homogeneity can be inferred from the superposition property
if « is a rational number, there are mathematical transformations which
satisfy superposition and not homogeneity. However, these are really
pathological examples, and they would not arise physically. Thus, we shall
be content to verify the linearity of an input-output relation by checking
superposition only.
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EXAMPLE 1.1. Suppose a system has an input-output relation given
by the linear equation

y(t) = ax(t) + b (1.5)

Graphically, z(f) and y(t) are related as shown in Figure 1.2. Does
Figure 1.2 represent a linear system? Consider the superposition
property. If we apply an input x,(t), the corresponding output is
y,(t) = ax,(t) + b. Similarly the input x,(f) gives as an output y,(7) =
azxy(t) + b. If we now apply the input z,(f) + x,(f), we obtain as an
output a(z,(1) + z,(1)) + b which is not equal to (y,(1) + y,(1)) =
a(z,(t) + z,(t)) + 2b unless b = 0. Thus, the system of Figure 1.2 is riot
linear even though the equation that relates z(f) and y(¢) is a linear
equation. It seems rather discouraging to have a system described by a
linear equation and yet not be able to use linear analysis to analyze the
system. We shall show in Section 1.5 how one can deal with this problem
so that linear analysis can be applied to this system.

EXAMPLE 1.2. Consider the circuit shown in Figure 1.3. In this
system, suppose that x(¢) is an input voltage and that () is an output
voltage. As long as point A is less than 3 V, then

y(t) = x(1)/2 (1.6)

Thus, x,(t) gives rise to y,(t) = x,(¢)/2 and x,(t) gives rise to y,(t) =
x,(t)/2. This means that (x,(f) + x,(f)) gives rise to ys(f) =
(2, (1) + x4(2))/2, which is %,(t) + y,(¢) (provided that (z,(f) + 2,(1)) <
3). Thus, the system is linear as long as the diode is not conducting. This
fact implies that point A must be less than 3 V: i.e., the system is linear
for the class of signals {x(¢)}, where x(f) or any combination of x(t)’s is

y )
Output

/b
/ 0 x(t) = Input

FIGURE 1.2




