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Preface

In the spring semester of 1966, I taught two undergraduate courses
at Brooklyn College: an “advanced elective” course in linear algebra,
which I had taught before; and a course entitled “Higher Analytic
Geometry,” which I had not taught before. I was aware from the
beginning of the semester, of course, that connections existed between
the subject matter of the first course and that of the second, having
first been exposed to such connections in a major way as a student in
the beautiful course taught by O. Zariski at Harvard in 1957 -58; but
I was not fully aware of the extent of these connections. Thus, it came
as something of a revelation to me to discover, as the term progressed,
that every topic which we covered in the first course (literally without
exception) was significantly applicable to the second course.

At this point I asked myself: if linear algebra and geometry can be
so well integrated mathematically, why not integrate them pedagog-
ically? Specifically, instead of two one-term courses, why not teach one
full-year course in which the relations between linear algebra and
geometry could be explored to their fullest extent? Here, it seemed,
might lie an opportunity to illustrate the unity of mathematics and
to counteract the prevalent tendency toward compartmentalization
of knowledge.

It is in the spirit of the preceding remarks that I decided to write
this book. There are other books available whose object is similar
(Jaeger’s Introduction to Analytic Geometry and Linear Algebra, for ex-
ample), but they are still sufficiently few in number so that I feel no
need for an excuse to contribute another one to the collection. To
confess the truth, I am really writing this book for myself; every
teacher eventually develops his or her own pet approaches to this or
that topic, and the urge to self-expression is strong. However, because
self-expression requires an audience to be fully satisfying, let me de-
scribe the probable audience for this book: students at the advanced
undergraduate level who have already had a one-term introduction
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to abstract (*modern”) algebra, and have understood the latter reasonably
well. The necessary algebraic background is fully summarized in Chap-
ter 1, but this chapter is intended mainly for reference and review;
the student who is not already familiar with the concepts of group,
ring, field, homomorphism, equivalence relation, and so on, is urged -
not only to read Chapter 1 carefully before going further, but also
to consult one of the good books on abstract algebra (for example,
[10] or [11]) for further details.

Some of the material in Chapter 1 will probably be new even to
those readers (hopefully the majority of readers) who have already
taken a course in abstract algebra. One may, if desired, postpone such
material until it is needed. (For example, Theorem 1.3.6 is not needed
until Section 4.7, and in that section a specific reference to Theorem
1.3.6 is given so that one will know where to look.) However, it is
recommended that the reader spend at least some time with Chapter
1 to refresh his or her memory of abstract concepts, before going on
to Chapter 2, which is the “real” beginning of the book.

Mathematically, this book is self-contained with four exceptions.
First exception: Some of the results in Sections 1.12 (the integers), 1.15
(properties of rational, real, and complex numbers), and 1.16 (prop-
erties of polynomials) are stated without proof. (For example, I felt
that this was not the place to construct the real number system; thus,
the existence of such a system is assumed.) However, references are
given in each of the above-mentioned sections to books in which the
missing proofs (including constructions) may be found. Second excep-
tion: Certain concepts and results external to algebra, whose full de-
velopment would be impractical in this book, are nevertheless needed
for the treatment of some specific topics that I wished to include,
namely: applications to area and volume (Sections 5.7 and 5.14), a
treatment of rigid motions and orientation using the concept of con-
tinuity (Sections 6.6 and 6.7), and the use of determinants in analysis
(Section 9.8 and Appendix E). These applications of algebra to other
fields are ends in themselves; their deletion would result in no harm
to the self-contained structure of the book (though the spirit of the
book would suffer; this sort of thing is what makes mathematics in-
teresting). Third exception (perhaps this is a subcase of the second
exception): The proof of the main result of Section 7.6 depends on
the fact that a real polynomial function of n variables is continuous.
Fourth exception: Some of the proofs are left as exercises for the reader.
Those exercises whose results are needed later are marked by asterisks.
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With the exceptions just noted, any result that is used is proved. So
as not to intimidate the reader, a few of the most formidable proofs
are relegated to appendixes. There is both a pedagogical and a phil-
osophical reason to include proofs of theorems in a textbook. The
pedagogical reason is that after working one’s way through a certain
number of proofs, one begins to recognize patterns, methods, styles
of proof and eventually develops skill in constructing proofs oneself.
The philosophical reason is that in the presence of proof, one is freed
from dependence on authority. It is not too good an idea to believe
everything you're told, whether the teller be a politician, a newspaper,
someone you love —or even a textbook on linear algebra and geometry.
We, too, make mistakes; more than one statement made in a textbook
(or even in a prestigious professional journal) has turned out to be
false. The reader, coming across any given statement in this or another
mathematics textbook, will perhaps assume that the statement has a
high probability (say, 99.97 %) of being true; but if he or she can verify
the statement by following a printed proof, step-by-step, the proba-
bility increases. (One recalls the old advertisement for the multisection
Sunday edition of the New York Times: “You don’t have to read it all
- but it’s nice to know it's all there.”)

A few words about my approach to geometry. In Chapter 2, all of
the geometry is informal; we use it to illustrate and motivate the
algebraic concepts of the chapter. Starting with Chapter 3, the ap-
proach changes: geometry is made formal, rigorous, algebraic. How-
ever, formal definitions are usually preceded by informal discussions
for the purpose of motivation, and I have tried to formulate such
definitions, whenever possible, so as to parallel the reader’s previous
geometric experience. For example, to define cos(u,v) as (u-v)/ |u||v|
seems unnecessarily artificial when the right-triangle approach can be
made rigorous. (Not all such artificialities are avoidable; e.g., distance
is defined via the square-root formula. We have to start somewhere.)

The major geometric areas covered in this book are affine geometry,
orthogonal (Euclidean) geometry, isometries, and quadric surfaces;
other topics present but receiving less emphasis include area and
volume and a very brief introduction to projective geometry (in an
affine context). The n-dimensional case is considered throughout,
both for the sake of generality and as a means of unifying the
treatment.

For use in a two-semester undergraduate course, Chapters 2
through 7, excluding Sections 7.6 and 7.7, should suffice for all but
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the best students. Sections 5.14, 6.6, and 6.7 could be omitted without
loss of continuity, but the material in these sections is likely to interest
the student and should be covered if time permits. Sections 7.6 and
7.7 and Chapters 8 and 9 are more abstract than what precedes them
and require a greater degree of mathematical maturity of the reader.

Even in mathematics there can be different paths to the same goal.
Thus, I try now and then to present more than one proof of a theorem,
more than one way of solving a problem, more than one way of
defining something. Sometimes, these alternate approaches appear
in the exercises.

Numerical examples appear throughout. Andrew Gleason, under
whom I took two graduate courses, used to tell us, “You're no good
if you can’t compute.” I agree.

Considerable use is made of the “equivalence relation” concept. For
instance, parallelism is an equivalence relation among lines; an “angle”
is an equivalence class of pairs of vectors (or pairs of rays); an “ori-
entation” in real n-space is defined to be an equivalence class of or-
thonormal n-tuples.

Numbering (except in appendixes) is by chapter, section, and item,
with the figures numbered separately from other items. Thus, for
example, the first two numbered items in Chapter 3, Section 4 (other
than figures) are Definition 3.4.1 and Theorem 3.4.2; the first two
figures in this same section are Figure 3.4.1 and Figure 3.4.2.
“1.11.1(d)” refers to the fourth part of item 1.11.1.

At the end of almost every section, exercises appear. The abbre-
viation SOL following an exercise means that a full or partial solution
to the exercise appears in Appendix G at the end of the book. The
abbreviation ANS means that an answer (but not the steps leading to
the answer) appears in the appendix; the abbreviation SUG means
that a mere hint or suggestion appears. As noted before, an asterisk
beside an exercise means that the result of the exercise will be needed
later.

The Halmos symbol 1 is used throughout the book to indicate the
end of a proof. The abbreviation R.A.A. (reductio ad absurdum)
appears in several proofs and means “contradiction”. (I do not un-
derstand why the latter abbreviation is so seldom used in mathematical
writing; it seems no more abstruse than Q.E.D.)

Of the courses I have taken and the texts from which I have taught,
so many have influenced this book that I could not possibly list them
all. However, I wish to express special gratitude to Professor Robert
Taylor, formerly of Columbia University, who first interested me in
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algebra; to Oscar Zariski, whose course in geometry was a revelation
to me; to Richard Brauer, whose advice and encouragement during
my struggle with a doctoral thesis (and subsequently) was invaluable;
to the late Moses Richardson of Brooklyn College, who encouraged
me to start this book; to Melvin Hausner, whose own book served as
a model in some respects; to my students, who have stimulated and
challenged me and have provided more than one of the ideas that 1
have used in the book; and to my family, who patiently did without
me for too many days and nights.

September, 1978 David M. Bloom
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1 Background in abstract algebra

1.0 Introduction

This chapter is for the purpose of reference and review. It summarizes
those fundamentals of abstract algebra that we will need later, and
largely parallels a standard first course in abstract algebra. If you have
already taken such a course, you probably should start right in with
Chapter 2, though you will find it necessary to refer back to this
chapter from time to time. The proofs are all here (except in Sections
1.15 and 1.16, where references to the literature replace proofs);
examples are fewer in number than in an abstract algebra text per
se, but I have tried to explain concepts clearly. If supplementary
reading is desired, either of the references [10] or [11] listed in the
References should prove helpful.

1.1  Sets, elements, basic notations

You probably have some idea of what is meant by a “set” and by an
“element” of a set. For example, we can speak of “the set of all integers
from 1 to 10”; the elements of this set are the integers from 1 to 10.
Similarly, if we speak of “the set of all Presidents of the United States
from 1955 to 1965, this set has three elements, namely Eisenhower,
Kennedy, Johnson., These examples do not constitute a formal defi-
nition; in fact, we cannot really give a formal definition at all. A concept
can be defined only in terms of simpler concepts, and there are no
concepts logically simpler than those of “set” and “element”. Thus we
must formally treat the words “set” and “element” as undefined terms.
However, this should not prevent us from believing that we know
what the words mean.
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Sets are often denoted by capital letters, and elements of sets by
small letters. (There are exceptions.) The set of all integers is com-
monly denoted Z; we shall do so throughout this book. The symbolic
expression

XEA

means “x is an element of (the set) A” (or some grammatical modi-
fication thereof; for instance, the sentence, “Let x € A” is of course
to be read, “Let x be an element of A”, not “Let x is an element of A”).
Phrases like “x belongs to A”, “x is in A”, “A contains x”, etc., mean
the same thing as “x is an element of A.”

When we wish to specify the elements of a set, we enclose them in
brackets which look like { }; thus, for example, if A is the set of all
integers from 1 to 16, we may write

A=1{1,23456,789, 10, 11, 12, 13, 14, 15, 16}.
If we do not feel like doing so much writing, an alternative is
A={x€EZ:1=<x<16},

which can be read, “A is the set consisting of all elements x of Z (that
is, all integers x) such that 1 < x < 16”. (The colon means “such that”.)
In short, the elements of a set may be specified either by listing them
or by describing them in terms of one or more properties. Asa further
illustration, if B is the set of all even integers from 1 to 10, then

B={2,4,6,8,10} ={x€Z:1=<x=< 10, x is even}.

The symbol & denotes the empty set, a set having no elements. It is
important not to confuse & (which has no elements) with {&} (which
has one element, namely ).

Two sets are equal (i.e., the same) if they have the same elements;
thus, to prove that the sets A and B are equal it suffices to show that
(1) every element of A belongs to B, and (2) every element of B belongs
to A. If (1) is true (whether (2) is true or not), A is called a subset of
B (notation: A C B), and B is called an overset, or superset, of A. The
notation A C B means that A is a proper subset of B; that is, A is a
subset of B but is not equal to B. (In this situation, we naturally call
B a proper overset of A.) For example, {0, 2} is a proper subset of
{0,1,2, 3}; {3,5,7,9} is a proper overset of {3,7}; {3} c{3, 5);
{1} c {1} but not {1} C {1}.

A diagonal line through one of the symbols =, €, C, &, <, > (etc.)
means “is not”; thus, for example, 3 # 5; 7 & {1, 2, 3, 4, 5, 6}; {3,
4,5} ¢ {3, 4}; 10 £8.

If A and B are sets, then A U B (the union of A and B) is the set
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whose elements are the elements of A together with the elements of

B. More generally, if A,, A,, ..., A, are sets, then the union of these
n sets, denoted either A, U *++ U A4, or

n

U A,

i=1
is defined to be the set consisting of all elements which belong to at
least one of the sets A;. For example,

{1,2,4,6yU{2,8U{l,7}={1,2,4,6,7, 8},
and if, say, A; = {1}, 4; = {2}, ..., A, = {n}, then

5
UA=1{1,23,4,5}
i=1

The intersection of two sets A and B (denoted A N B) is the set whose
elements are the elements common to A and B. Similar definitions
apply to more than two sets. For example,

{1,3,5} n {3,5,7} = {8, 5}

{2, 3,5} n {2, 5,6} N{23,6} ={2}

{1» 2} N {39 4} =
Two sets are disjoint if they have empty intersection; that is, if they
have no elements in common.

The sets {2, 3}, {3, 2}, and {2, 3, 2} are equal, since they have the
same elements; the order in which we write the elements does not
matter, nor does it matter if some element is listed more than once.
In some situations, however, such distinctions matter. If, for example,
we assign coordinates (x, y) to points in the plane (as in elementary
analytic geometry), the points (2, 3) and (3, 2) are different; similarly,
the point (2, 3) in the plane is not the same as the point (2, 3, 2) in
3-space. Expressions like (2, 3) and (3, 2), written with ordinary pa-
rentheses instead of brackets, are called ordered pairs; expressions like
(2, 3, 2) are called ordered triples. More generally, if # is any positive
integer, then an expression of the form (a;, as, ..., a,) is called an
ordered n-tuple. (The word “ordered” is occasionally omitted to save
space.) In the n-tuple (ai, as, ..., an), @, is called the first coordinate, a;
is called the second coordinate, and so on. Two ordered n-tuples are
equal only if they have the same first coordinate, the same second
coordinate, ..., the same nth coordinate.

If A and B are sets, then A X B is the standard notation for the set
of all ordered pairs (a, b) such that @ € A and b € B. For example,
if A = {1, 2} and B = {a, b, c}, then

A x B ={,a),,b),(,c), 2 a), (2 b), (2,0}
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Observe that in this example A has two elements, B has three elements,
A X B has six elements. Does this suggest to you a general result
concerning the number of elementsin A x B? Does it suggest a reason
for the notation “A X B”?

1.2  Mappings

Let A, B be sets. A mapping of A into B is (to be informal) a rule that
assigns to each element x € A exactly one element x’ € B. A mapping
of A into B is normally denoted by a single letter, such as T; the
notation

T:A—> B

is read, “T is a mapping of A into B”. (The set A is then called the
domain of T.) If the mapping T assigns to the element @ € A the
element b € B, then b is called the image of a under T, or (more
concisely) the T-image of a; and we say that “a is mapped into b by
T”. In this situation, we write

a1z aT=b
or
T:a—b.

If b is the image of a under T, then a is said to be a pre-image of b
under T. Note that although an element of A has exactly one image
in B, an element & € B may have any number of pre-images in 4; for
that matter, it may have no pre-images in A.

The type of notation exhibited in 1.2.1 is called right-hand notation.
Some authors prefer left-hand notation, in which one writes T(a) = b
instead of aT = b. (Left-hand notation is almost universal in elemen-
tary calculus textbooks, in which mappings are called “functions” and
the sets A and B are usually intervals of real numbers.) Unfortunately,
mathematicians as a body have never been able to agree on which
hand to use. This is not entirely the fault of mathematicians; each
notation is at times more convenient to use than the other, depending
on the context. In this book, we shall usually use the right-hand no-
tation 1.2.1, but exceptions will occur.

If A, is any subset of A and if T : A — B, then we use the notation
A,T for the set of all images (under T) of elements of A,. That is,

AoT = {xT x € Ao}.
For example, if A = B = Z and the mapping T : Z — Z is defined by
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nT = n?, and if A = {2, 5, 7}, then A,T = {4, 25, 49}. By analogy
with our terminology regarding single elements, the set A,T is called
the image of the set A, under T.

If T: A — B, then the set AT is called the range of T; it consists of
all elements of B which are images of elements of A. The range of
T is a subset of B; it may or may not be the whole set B. Both possibili-
ties are illustrated in Figure 1.2.1. In each part of Figure 1.2.1, dots
denote distinct elements of A and B, and arrows indicate the corre-
spondence between each element of A and its image in B. In part (a)
of the figure, every element of A has exactly one image in B (as
required), but two of the elements of B, namely, b; and bg, have no
pre-images in A; the range of T is, thus, AT = {b,, by, b4, bs}. If
T : A — B is a mapping such that every element of B has a pre-image
in A, then T is said to be onto and we say that T maps 4 onto B. In
other words, T is onto if and only if AT = B. The mapping shown in
Figure 1.2.1(b) is onto; the mapping shown in Figure 1.2.1(a) is not.

In Figure 1.2.1(b), every element of A has exactly one image in B,
as required; but the images are not all distinct, since a, and a, have
the same image. A mapping of A — B is called one-to-one (1-1) if no
two elements of A have the same image (equivalently, if no element
of B has more than one pre-image). Thus in Figure 1.2.1(a), the
mapping is one-to-one, but not in Figure 1.2.1(b). To show that a
given mapping T : A — B is one-to-one, we must show that if @, # a,
(in A) then a,T # a.T; or, equivalently, thatif ¢,T = a,T then a, = a,.
The latter is actually the more common method of proof; in a typical
proof that a mapping T is one-to-one, the first sentence reads, “Assume
a;T = a,T”, and the last sentence reads, “Therefore a, = a,”.

Figure 1.2.1
A B A B A B
a e o b a; e ® ®. [

A

a; e

a ® ® b, [ * [ '®

/

a, 0\' by ) . )
® by
® b,
one-to-one onto one-to-one
not onto not one-to-one onto

(@) (b) ©



