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MFCS'76

FOREWORD

This volume contains papers which were contributed for presentation
at the Symposium on Mathematical Foundations of Computer Science
MFCS’76, held in Gdaiisk, Poland, September 6-10, 1976. This symposium
is the 5th in the series of annual MFCS symposia organized in turn in
Poland /every even year/ and Czechoslovakia /every odd year/ .

The aim of these symposia is to promote and to develop the mathematical
approach to the basic computational phenomena.

The articles in these Proceedings consist of a number of invited
papers and short communications concerning mathematical results moti-

vated by practical problems and related to:

‘Programs and computations,

‘Programming languages,

‘Data bases and information retrieval systems,
"Analysis and complexity of algorithms,

‘Formal languages and automata.



The scientific interest in the above topics is increasing rapidly; an
example of this interest can be seen in the number of papers submitted
for the Symposium. The Program Committee has been forced to reject more
than half of them /sometimes valuable ones/. The main guideline for se-
lecting papers was their orginality and relevance to the subject of the
Symposium.

The Symposium is being organized by the Computation Centre of the
Polish Academy of Sciences in cooperation with the University of Gdarisk.
The organizers of the Symposium are grateful to all authors for
their valuable contributions and to all people who helped in the orga-
nization of the Symposium. The main part of the organizational work has

been done by the following members of the committee: E.Czuchajew ,
P.Dembiriski /Vice-Chairman/, C.Gdéral, W.Kwasowiec, J.Leszczytowski ,
W.Lipski,Jr. , A.Mazurkiewicz /Symposium Chairman/, A.W.Mostowski ,
B.Rykaczewska, J.Winkowski /Program Chairman/. The organizers are spe-
cially indebted to J.Winkowski, who has taken the greatest part in the
preparation of this volume.

The help of Springer-Verlag, which has produced these Proceedings

is highly appreciated.

Antoni Mazurkiewicz

Warsaw, May 1976
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EXERCISES IN DENOTATIONAL SEMANTICS

K.R. Apt

J.W. de Bakker

Mathematisch Centrum, Amsterdam

1. INTRODUCTION

The present paper is a progress report about our work on semantics and proof theory
of programming languages. We study a number of fundamental programming concepts occur-
ring e.g. in the language PASCAL, viz. assignment, sequential composition, conditionals,
locality, and (recursive) procedures with parameters called-by-value and called-by-
variable. Our goal is the development of a formalism which satisfies two requirements
- Semantic adequacy: the definitions capture exactly the meaning attributed to these

concepts in the PASCAL report.

- Mathematical adequacy: The definitions are as precise and mathematically rigorous as
possible.

Of course, full semantic adequacy cannot be achieved within the scope of our paper. Thus,

we were forced to omit certain aspects of the concepts concerned. What we hope to have

avoided, however, is any essgntial alteration of a concept for the sake of making it
more amenable to formal treatment.

Our approach follows the method of denotational semantics introduced by Scott
and Strachey (e.g. in [12]). Moreover, we investigate the connections between denota-
tional semantics and Hoare's proof theory ([6]), in sofar as pertaining to the concepts
mentioned above.

As main contributions of our paper we see
- The proposal of a new definition of substitution for a subscripted variable. This

allows an extension of Hoare's axiom for assignment to the case of assignment to a
subscripted variable. (This idea is described in greater detail in [2].)

- The proposal of a semantic definition and corresponding proof rule for recursive
procedures with an adequate treatment of call-by-value and call-by-variable. (We
believe these to be new. The proof rule is based on Scott's (or computatiomal) in-
duction, which is well-understood for parameterless procedures, but hardly so for
procedures with parameters. In our opinion, neither the papers of Manna et al. (e.g.
in [10,11]) nor those of e.g. De Bakker ([1]), Hoare ([7]), Hoare and Wirth ([8]),
Igarashi, London and Luckham ([9]) give the full story on this subject.)

It will turn out that our treatment of procedures is quite complex. However, we doubt

whether an approach which is essentZally simpler is possible. Of course, we do not claim

that our formalism is the last word, but the programming notions involved are intricate,



and we feel that essential simplification could be obtained only by changing the lan-

guage.

The paper has the following outline:

Section 2 gives the syntax of the various language constructs. Also, a careful defini-

tion of substitution is given which is needed for the treatment of assignment, local-

ity and parameter passing.

Section 3 is devoted to the definition of the denotational semantics of the five types

of statements. We introduce the semantic function M which gives meaning to a statement

S, in a given environment ¢ (a mapping from variables to addresses) and store ¢ (a map-—

ping from addresses to values), yielding a new store ¢' : M(S)(e,0) = o'. For assign-—

ment, sequential composition and conditionals the definitions are fairly straightfor-
ward. It is also reasonably clear what to do about locality, but the treatment of pro-
cedures may be rather hard to follow. Some of the causes are:

- When applying the usual least fixed point approach, one has to be careful with the
types (in the set-theoretical sense) of the functions involved.

— The notion of call-by-variable (the FORTRAN call-by-reference) requires a somewhat
mixed action to be taken: When the actual parameter (which has to be a variable) is
subscripted, the subscript is evaluated first, and then a process of substitution of
the modified actual for the formal is invoked.

— The possibility of clash of variables has to be faced. (Cf. the ALGOL 60 report,
sections 4.7.3.2 (Example: b int x; proc P(x); int x;b...e;...P(x+1)...e) and 4.7.3.3
(Example: b int x; proc P;b...x...e5...b int x;...P...e...e).) These problems are not
exactly the same as encountered in mathematical logic; in particular, they cannot
simply be solved by appropriate use of the notions of free and bound occurrence and
of substitution, as customary in logic.

Section 4 introduces the proof-theoretical framework. It contains the "Exercises in

denotational semantics': For each type of statement, a corresponding axiom or proof

rule is given, and it is required to show its soundness. Also, a modest attempt at
dealing with substitution is included. In fact, for two rules (sequential composition
and conditionals) the proof is easy, for the assignment axiom we refer to [2], whereas
the remaining three cases should, at the moment of writing this, be seen as conjectures
since we do not yet have fully worked out proofs available. However, we are confident
that the rules, perhaps after some minor modifications, will turn out to be sound.

It may be appropriate to add an indication of the restrictions we have imposed
upon our investigation. There are a few minor points (such as: only one procedure de-
claration, i.e., not a simultaneous system; only one parameter of each of the two types,
etc.). Next, things we omitted but which we do not consider essentially difficult (such
as type information in declarations) and, finally, a major omission: We have no func-—
tion designators inexpressions, nor do we allow procedure identifiers as parameters.

There is a vast amount of literature dealing with the same issues. Many of the

papers take an operational approach, defining semantics in terms of abstract machines.



This we wholly circumvent in the present paper, though it is in fact needed for the
justification of the least fixed point approach to recursion (to be given along the
lines of De Bakker [1]). Many others take their starting point in some powerful mathe-—
matical system (universal algebra, category theory), but tend to fall short of a treat-—
ment of the subtler points of the programming notions at hand. A proof-theoretic ap-
proach can be found e.g. in Hoare and Wirth [8] or Igarashi, London and Luckham [9],
but we must confess not to be able to follow their treatment of procedures and param-—
eter passing. There are also a few papers dealing with the relationship between seman-
tics and proof theory, such as Donahue [4], Cook [3] and Gorelick [5]. Again, the ap-
proach of these papers differs from the present one. E.g., the first one omits treat-
ment of recursion, and the other two treat locality in a way which differs from ours
(cf. the block rule in our section 4). On the other hand, we recommend the papers by
Cook and Gorelick for a discussion of substitution, a topic to which we pay little

attention below.

2. SYNTAX

We present a language which is essentially a subset of PASCAL, though there are
some notational variants introduced in order to facilitate the presentation. We start

with the following classes of symbols:

SV = {x,y,2z2,u,...}: the class of simple variables,

AV = {a,b,...} :  the class of array variables,
B = {n,m,...} : the class of <nteger constants,
P = {PyQysss} : the class of procedure symbols.

For technical reasons which will become clear below (def. 2.1, def. 3.3), we
assume some well-ordering of these four sets.
Using a self-explanatory variant of BNF, we now define the classes U (variables),

IE (Znteger expressions), BE (boolean expressions), and S (statements):

/' (with elements V,Wwy...) vii= x|alt]

IE (with elements r,s,t,...) t::= v|n|t1+t2|t1*t2| if p then tl else t2 £i
BE (with elements p,qy...) pii= Ezgslzgliglt]=t2|t]>t2|p13p2’plAp2|ﬂp

S (with elements S,SO,...) S:i:= v:=t|SI;SZ|i£ p then S1 else S2 fil

begin new x; S end|P(t,v).

Remarks

1. We shall use the notation £, 3ty (plzpz, S]ESZ) to indicate that t and ty (p1 and
Pys S] and Sz) are identical sequences of symbols.

2. Whenever convenient, we shall use parentheses to enhance readability or to avoid
ambiguity. Syntactic specification of this is omitted.

3. (Variables) Note that we have simple variables (x,y,z,u) and subscripted variables

(alt],bls],...), and that an arbitrary variable v may be both simple or subscripted.



4, (Expressions) The syntax of IE and BE has been kept simple on purpose. A minor ex-
tension would be to introduce additional operations. On the other hand, the inclu-
sion of functions designators within IE or BE presumably would constitute a major

extension, requiring substantial additional analysis below.

5. (Statements) In S we have: assignment, sequential composition, conditionals, blocks,
and procedure calls. The last two cases require further comment:
6. (Blocks) We restrict ourselves to declarations of simple variables without type in-

formation. This is motivated by our wish to treat declarations only in sofar as
needed for the analysis of parameter passing.

7. (Procedures) Throughout the paper, we restrict ourselves to the case that we have
only one procedure declaration, given in the form

(2.1) Peval x - var y - SO

with the following conventions

() P e P, x,y ¢ SV, SO e S, with x # y.

(B) SO is the procedure body, x the formal value parameter, y the formal variable
parameter.

(y) In a call P(t,v), t is the actual (e IE) corresponding to the formal x, and
v (e V) corresponds to y.

(8) The declaration (2.1) is assumed to be '"globally" available; a call P(t,v) al-
ways refers to (2.1) as corresponding declaration.

(In PASCAL, one would write for (2.1):

procedure P(x:integer,var y:integer);So).

Extension to a treatment of systems of declarations is reasonably straightfor-

ward (see e.g. [1]), and omitted here mainly for reasons of space; extension to

any number of (value and variable) parameters is trivial.

Substitution plays an important role below, both in semantics and proof theory
(assignment, locality, parameter mechanisms). In particular, we define
- S[v/x]: substitute the (arbitrary) variable v for the simple variable x in S;
- s[t/v] and plt/v]: substitute the integer expression t for the variable v in s or p.
The first kind of substitution is defined in the standard way using the notions of free
and bound occurrence of a simple variable in a statement (An occurrence of x in S 1is
bound whenever it is within a substatement of S of the form begin new X;S] end. All
other occurrences of x in S are free.) The second kind of substitution, which includes
the case of substitution for a subscripted variable, was introduced in De Bakker [2].
We refer to that paper for a detailed account of this, in particular of its application

in proving correctness of assignment statements.
. DEFINITION 2.1. (Substitution in a statement)

a. (w:=t)lv/x] = (wlv/x1:=tlv/x])
b. (Sl;Sz)Ev/x] = (S][V/X];Sz[v/x])



c. (if p then S1 else S2 fi)lv/x] = if plv/x] then Sl[v/x] else Szfv/x] fi
d. (begin new z;S end)[v/x] = begin new z;S end, if x = 2z
- = begin new z;S[v/x] end, if x # z and z does not occur
free in v
= begin Egg'z';s[z'/z][v/x] end, if x Z z and z occurs
free in v, where z' is the first variable # x mot occur-

ring free in v or S

e. P(t,w)[v/x] = P(tlv/x],wlv/x]).

DEFINITION 2.2. (Substitution in an expression)
a. The definitions of s[t/v] and p[t/v] are straightforwardly reduced by formula induc-
tion to that of w[t/v], for some w ¢ V.
b. We distinguish two cases: v =x, and v =a[s].
(o) x[t/x] = ¢, ylt/x] =y (xty), alsllt/x] = alslt/x]1]
(B) x[t/als]]= x, bls'llt/als]1] = bls'[t/als]]1] (a#b),
als'1(t/als]] = if s'[t/als]] = s then t else als'[t/als]]] fi.

Examples
1. (begin new y; x:=alyl; P(x+y+z, alx]) end)[y/x] =
begin new y'; y:=aly'l]; P(y+y'+z, alyl) end.
2. x[1/alal1]]] = x, blL2][1/alal1]]] = bL21],
alal2]1101/alal2]]] = if(if 2 = a[2] then 1 else a[2] fi) = a[2]

then 1 else a[if 2 = a[2] then 1 else a[2] fil fi.

Observe that the last expression is semantically (section 3) (though not syntactic-—

cally) equal to if a[2] = 2 then a[1] else 1 fi.

3. DENOTATIONAL SEMANTICS

For any two sets K, L[, let (K~ L) ((K E;;? L)) denote the set of all functions
(all partial functions) from K to L.

We define the meaning M of the various types of statements in our language yield-
ing, for S € S, as a result a partial function M(S) operating on an environment-store
pair yielding a new store: M(S)(e,o) = o',

As starting point we take the set A = {a,B,...} of addresses and the set I =
{v,us...} of integers. Again, we assume these to be well-ordered. Let = {o0,0',...}be
the set of stores, i.e. L = (A > 1), and let Env = {e,e’',...} be the set of environ-
ments, i.e., of certain partial, 1-1 functions from SV u (AUxI) to A. More specifi-
cally, we require that each € is defined on a finite subset of SV, and on all elements
AV x 1. Thus, for each x € SV, e(x) ¢ A may be defined, and for each a ¢ AV and v ¢ I,
e(a,v) 75 defined. (For a subscripted variable als], if s has the current value v,
e(a,v) yields the address corresponding to a[s]. The assumption that e(a,v) is always
defined stems from the fact that we study (explicit) declarations of simple variables

only. Array variables may be considered as (implicitly) declared globally.) Next, we



