Lecture Notes in

Computer Science

 Edited by G. Goos and J. Hartmanis,

s
: ‘ 3 i g
¥ % » 7 e L ; 7 i
4 3 A 5 i 'y
;A >]
M v & :
s ! :

ok Mathematlcal Foundatlons ¢

- ‘:of Computer Sc;lence 1976“’ |

- Spnnger Ver|ag

| Berhn Heldelberg NewYor k . ';5:‘;3

Lecture Notes In
Computer Science

Edited by G. Goos and J. Hartmanis

45

Mathematical Foundations
of Computer Science 1976

Proceedings, 5th Symposium,
Gdansk, September 6-10, 1976

Edited by A. Mazurkiewicz

Ly

Springer-Verlag
Berlin - Heidelberg - New York 1976

Editorial Board
P. Brinch Hansen - D. Gries - C. Moler - G. Seegmiiller - J. Stoer
N. Wirth

Editor

Antoni Mazurkiewicz
Computation Centre
Polish Academy of Scie
P.O.Box 22,

00-901 Warszawa/Pola

AMS Subject Classifications (1970): 02C99, 02E10, 02E15, 02H10,
18B20,68A05,68A10,68A20,68A25,68A30,68A45,94A25,94A30

ISBN 3-540-07854-1 Springer-Verlag Berlin - Heidelberg - New York
ISBN 0-387-07854-1 Springer-Verlag New York - Heidelberg - Berlin

This work is subject to copyright. All rights are reserved, whether the whole
or part of the material is concerned, specifically those of translation, re-
printing, re-use of illustrations, broadcasting, reproduction by photocopying
machine or similar means, and storage in data banks.

Under § 54 of the German Copyright Law where copies are made for other
than private use, a fee is payable to the publisher, the amount of the fee to be
determined by agreement with the publisher.

© by Springer-Verlag Berlin - Heidelberg 1976

Printed in Germany

Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr.

MFCS'76

FOREWORD

This volume contains papers which were contributed for presentation
at the Symposium on Mathematical Foundations of Computer Science
MFCS’76, held in Gdaiisk, Poland, September 6-10, 1976. This symposium
is the 5th in the series of annual MFCS symposia organized in turn in
Poland /every even year/ and Czechoslovakia /every odd year/ .

The aim of these symposia is to promote and to develop the mathematical
approach to the basic computational phenomena.

The articles in these Proceedings consist of a number of invited
papers and short communications concerning mathematical results moti-

vated by practical problems and related to:

‘Programs and computations,

‘Programming languages,

‘Data bases and information retrieval systems,
"Analysis and complexity of algorithms,

‘Formal languages and automata.

The scientific interest in the above topics is increasing rapidly; an
example of this interest can be seen in the number of papers submitted
for the Symposium. The Program Committee has been forced to reject more
than half of them /sometimes valuable ones/. The main guideline for se-
lecting papers was their orginality and relevance to the subject of the
Symposium.

The Symposium is being organized by the Computation Centre of the
Polish Academy of Sciences in cooperation with the University of Gdarisk.
The organizers of the Symposium are grateful to all authors for
their valuable contributions and to all people who helped in the orga-
nization of the Symposium. The main part of the organizational work has

been done by the following members of the committee: E.Czuchajew ,
P.Dembiriski /Vice-Chairman/, C.Gdéral, W.Kwasowiec, J.Leszczytowski ,
W.Lipski,Jr. , A.Mazurkiewicz /Symposium Chairman/, A.W.Mostowski ,
B.Rykaczewska, J.Winkowski /Program Chairman/. The organizers are spe-
cially indebted to J.Winkowski, who has taken the greatest part in the
preparation of this volume.

The help of Springer-Verlag, which has produced these Proceedings

is highly appreciated.

Antoni Mazurkiewicz

Warsaw, May 1976

CONTENTS

Invited Lecturers

K.R. Apt and J.W. de Bakker

Exercises in Denotational Semantics............ oW F N

W. Brauer

W-Automata and their Languagesccoe.. o R

J-M. Cadiou

On Semantic Issues in the Relational Model of Data ...

E.W. Dijkstra

The Effective Arrangement of Logical Systems o

G. Germano and A. Maggiolo-Schettini

Recursivity, Sequence Recursivity, Stack Recursivity and

Semantiecs of PEOGYAMS s wes«wwe s omes s wiesesss v e

J. Gruska

Descriptional Complexity (of Languages)-A Short Survey

I.M. Havel

On the Branching Structure of Languages 00

R. Kowalski (paper not received)

U. Montanari (paper received late, see page 576)

N.M. Nagorny

Algorithms and Real Numbers R 0T 03 5 0 T S
M. Nivat (paper not received)

M. Novotng

On Mappings of Machines GBS SRR S8 s

12

23

39

52

65

81

99

Vi

A. Salomaa

Recent Results Oon L SyStemS ...eeeeeceecsaosassssscacssscsannss 115

P.H. Starke

Decision Problems for Multi-Tape Automata ..eeeeeecseeceasassss 124

B.A. Trakhtenbrot

Recursive Program Schemes and Computable Functionals 137

E.G. Wagner, J.B. Wright, J.A. Goguen, and J.W. Thatcher

Some Fundamentals of Order-Algebraic Semanticscceeeuenn 153

Communications

V.N. Agafonov

On Attribute Grammars .« «wwes e ssessss &6wesseensssssess L IEL L . 169

L. Aiello, M. Aiello, G. Attardi, P. Cavallari, and G. Prini

Formal Definition of Semantics of Generalized Control Regimes . 173

E.S. Bainbridge

Minimal While Programseeeeeceeenens. 68 e W W 4 T B E 8 6 vewns 180

V. Benda and K. Bendova

On Specific Features of Recognizable Families of Languages 187

E. Bergmann

On the Termination of Simple Computer Programs sesmmwws 194

G. Berthelot and G. Roucairol

Reduction of Petri-Nets ..oieieieeeeneeenneeneneeneennnnan ceee.. 202

J. Brunner and W. Wechler

On Behaviour of R-Fuzzy Automata T I ELY A e]

A.O. Buda
Cannonizing Reducibility Method in the Theory of Program

Schemata ...ceveeenns v e i T e 8 W e) 8 € GemesameusiEEnRE i4 2006

C. Choffrut
Strongly Connected G-S-M Mappings Preserving Conjugation 224

Vi

M.P. Chytil
Analysis of the Non-Context-Free Component of Formal

LangURages ms swesies %@ G35 §5 0G5 SSwEFS cURNAs s SHRGEVERBART I EOTE 8506 230

M. Colombetti and E. Pagello

Programs, Computations and Temporal FeatuUreseeeeeeeeas 237
W. Coy
A Note on the Automatic Generation of Inductive Assertions ... 244

A. Cremers and Th.N. Hibbard

On the Relationship between a Procedure and its Data 250

M.I. Dekhtyar

On the Relativization of Deterministic and Nondeterministic

Complexity ClasSsS@s ittt it ittt ieeeeeneeeeneeneneeneenens 255
A. Dinca
The Metric Properties on the Semigroups and the Languages 260

D. Dobkin and R.J. Lipton
A Lower Bound of %nz on Linear Search Programs for the
Knapsack Problem wws s swmus s 50606 s 8m S5 5 EF a6 § Rafims o dommme sommsoe s 265

W. Dorfler

The Direct Product of Automata and QuUasi—-AUtomata 270

H.-D. Ehrich

An Axiomatic Approach tc Information Structures 277

H. Ehrig and H.-J. Kreowski
Parallelism of Manipulations in Multidimensional Information

S o o = 284

H.J. Genrich and G. Thieler-Mevissen (paper received late,

see page 588)

S. Ginsburg and O. Mayer

On Strict Interpretations of Grammar FOIXMS ..eeuevnunnenennnn. 294

I. Gorun

A Hierarchy of Context-Sensitive LanguUagesSeeeeeoeennenn.. 299

J. Gorski

VIl

On Consecutive Storage of Records

M. Grabowski

A Remark on Equivalence of Mazurkiewicz's Finite -

Control Algorithms over Nets

I. Hansen and J. Leszczylowski

c e s e s s e 0 e s e e e s e e e e e s e e

Microprogram - Oriented Model of the Controlled Structure

M.D. Harrison

Relations between Programs with Different Storage Requirements

F.W. von Henke

An Algebraic Approach to Data Types, Program Verification,

and Program Synthesis ..

M. HOpner and M. Opp

About Three Equational Classes of Languages Built Up

by Shuffle Operations ..

H. Huwig

A Machine Independent Description of Complexity Classes,

Definable by Nondeterministic as well as Deterministic

Turing Machines with PrimitiveRecursive Tape or Time Bounds ..

K. Indermark

Schemes with Recursion on Higher Types

Constructing Iterative Version of a System of

J. Irlik
Procedures .c.ceecececsesa
W. Issel

A Method Using a Set-Theoretical Formalism to

Semantics of Programming Languages

R. Jagielski
The Cubic Search Method

e s s s s e e e

Describe the

304

311

317

323

330

337

345

352

359

364

372

R. Janicki

Vectors of Coroutines wescsseossmeonsssmuess o118 8§ 9 @ 101 w80 e e e 80 0 @ ol e

J. Jedrzejowicz

One - One Degrees of Turing Machines Decision Problems

M. Karpihski (paper received late, see page 596)

J. Kelemen

Heuristic Representation of State-Space by Finite Automaton .

R. Knast

Semigroup Characterizations of Some Language Varieties

A. Kreczmar

On Memory Requirements of Strassen's Algorithms

W. Kwasowiec

Determinism in Concurrent Systems Ceceene st ses s nnae

K. Lautenbach and H. Wedde

Generating Control Mechanisms by Restrictions ««...... ceee e

J.W. Raski

On Diagnosis of Algorithmical ProCesSSeS ...ceseesescccacsncces

B. Mikotajczak

On Some Properties of Cyclic Automata and their Extensions ...

P.D. Mosses

Compiler Generation Using Denotational Semantics v e

V.A. Nepomniaschy

On Divergence Problem for Program SChemas .e.eseeeeeneesoances

A. Nijholt

On the Parsing of LL-Regular GrammarsS «....eeeeeeseesass Ty

D. Perrin

The Characteristic Polynomial of a Finite Automaton oy

377

385

390

395

404

408

416

423

430

436

442

446

453

P. Prusinkiewicz
Error Detection Using Regular Languages ..ceeeceeseccscnss camuss 458

Z. Ras
On a Relationship between Programs of Address Machines

and Mazurkiewicz Algorithms B0 1 A a0 ¥ A T S seumwews 4653

W.P. de Roever
Dijkstra's Predicate Transformer, Non-Determinism, Recursion,

and Termination 6 e W6 W 8§ e e W 66 e e e e e e e e e e 472

G. Rozenberg and D. Vermeir

Context-Free Programmed Grammars and ETOL Systems 482

T. Rus
Context-Free Algebra: A Mathematical Device for Compiler

SPECLELTEEAOH: o aio ois winaioie mie v o siais oo e e e s oo ® aiioi orisl e e o] wia lm paezcon o 488

P. Ru¥i&ka and J. Wiedermann

On the Lower Bound for Minimum Comparison Selection ssws 495

A. Salwicki and T. Mildner
Computational Processes Generated by Programs with

Recursive Procedures and Block Structuresc... ssnmews O3

J. Sakarovitch
An Algebraic Framework for the Study of the Syntactic
Monoids-Application to the Group Languageseeeeeeeeses. 510

V. Yu. Sazonov

Degrees of Parallelism in Computations e e e mie e e e e e i e s 17

A. Schurmann

On Adaptability of a System of Programse.ceeees SRR TR 524

A. Skowron

A Mathematical Model of Parallel Information Processing 530

M.B. Smyth

PowerdOomains ceeeeeeeseceseas e, e 16 e B B e B B e e pawanwy D37

X

J. Tiuryn
On the Domain of Iteration in Iterative Algebraic

THeOries sesviweesssnmeesane e e § s Y e 15 8 16 ;4] w01 @ e cw

R. Verbeek and K. Weihrauch
The Influence of the Data Presentation on the

Computational Power of Machines a g e at) o

J. Winkowski
On Sequential Modelling of Non-Sequential Processes

Z. Zwinogrodzki

Equivalence and Optimization of Recursive Program Schemata

V. Giarratana, F. Gimona, and U. Montanari

Observability Concepts in Abstract Data Type Specification .

H.J. Genrich and G. Thieler-Mevissen

The Calculus Of FaACtsS ttvtiteeeeeeeeenseeneensesesoenenennnn

M. Karpihski

Multiplicity Functions on (o-Automata cteeecsesces et sann

544

551

559

569

576

588

596

EXERCISES IN DENOTATIONAL SEMANTICS

K.R. Apt

J.W. de Bakker

Mathematisch Centrum, Amsterdam

1. INTRODUCTION

The present paper is a progress report about our work on semantics and proof theory
of programming languages. We study a number of fundamental programming concepts occur-
ring e.g. in the language PASCAL, viz. assignment, sequential composition, conditionals,
locality, and (recursive) procedures with parameters called-by-value and called-by-
variable. Our goal is the development of a formalism which satisfies two requirements
- Semantic adequacy: the definitions capture exactly the meaning attributed to these

concepts in the PASCAL report.

- Mathematical adequacy: The definitions are as precise and mathematically rigorous as
possible.

Of course, full semantic adequacy cannot be achieved within the scope of our paper. Thus,

we were forced to omit certain aspects of the concepts concerned. What we hope to have

avoided, however, is any essgntial alteration of a concept for the sake of making it
more amenable to formal treatment.

Our approach follows the method of denotational semantics introduced by Scott
and Strachey (e.g. in [12]). Moreover, we investigate the connections between denota-
tional semantics and Hoare's proof theory ([6]), in sofar as pertaining to the concepts
mentioned above.

As main contributions of our paper we see
- The proposal of a new definition of substitution for a subscripted variable. This

allows an extension of Hoare's axiom for assignment to the case of assignment to a
subscripted variable. (This idea is described in greater detail in [2].)

- The proposal of a semantic definition and corresponding proof rule for recursive
procedures with an adequate treatment of call-by-value and call-by-variable. (We
believe these to be new. The proof rule is based on Scott's (or computatiomal) in-
duction, which is well-understood for parameterless procedures, but hardly so for
procedures with parameters. In our opinion, neither the papers of Manna et al. (e.g.
in [10,11]) nor those of e.g. De Bakker ([1]), Hoare ([7]), Hoare and Wirth ([8]),
Igarashi, London and Luckham ([9]) give the full story on this subject.)

It will turn out that our treatment of procedures is quite complex. However, we doubt

whether an approach which is essentZally simpler is possible. Of course, we do not claim

that our formalism is the last word, but the programming notions involved are intricate,

and we feel that essential simplification could be obtained only by changing the lan-

guage.

The paper has the following outline:

Section 2 gives the syntax of the various language constructs. Also, a careful defini-

tion of substitution is given which is needed for the treatment of assignment, local-

ity and parameter passing.

Section 3 is devoted to the definition of the denotational semantics of the five types

of statements. We introduce the semantic function M which gives meaning to a statement

S, in a given environment ¢ (a mapping from variables to addresses) and store ¢ (a map-—

ping from addresses to values), yielding a new store ¢' : M(S)(e,0) = o'. For assign-—

ment, sequential composition and conditionals the definitions are fairly straightfor-
ward. It is also reasonably clear what to do about locality, but the treatment of pro-
cedures may be rather hard to follow. Some of the causes are:

- When applying the usual least fixed point approach, one has to be careful with the
types (in the set-theoretical sense) of the functions involved.

— The notion of call-by-variable (the FORTRAN call-by-reference) requires a somewhat
mixed action to be taken: When the actual parameter (which has to be a variable) is
subscripted, the subscript is evaluated first, and then a process of substitution of
the modified actual for the formal is invoked.

— The possibility of clash of variables has to be faced. (Cf. the ALGOL 60 report,
sections 4.7.3.2 (Example: b int x; proc P(x); int x;b...e;...P(x+1)...e) and 4.7.3.3
(Example: b int x; proc P;b...x...e5...b int x;...P...e...e).) These problems are not
exactly the same as encountered in mathematical logic; in particular, they cannot
simply be solved by appropriate use of the notions of free and bound occurrence and
of substitution, as customary in logic.

Section 4 introduces the proof-theoretical framework. It contains the "Exercises in

denotational semantics': For each type of statement, a corresponding axiom or proof

rule is given, and it is required to show its soundness. Also, a modest attempt at
dealing with substitution is included. In fact, for two rules (sequential composition
and conditionals) the proof is easy, for the assignment axiom we refer to [2], whereas
the remaining three cases should, at the moment of writing this, be seen as conjectures
since we do not yet have fully worked out proofs available. However, we are confident
that the rules, perhaps after some minor modifications, will turn out to be sound.

It may be appropriate to add an indication of the restrictions we have imposed
upon our investigation. There are a few minor points (such as: only one procedure de-
claration, i.e., not a simultaneous system; only one parameter of each of the two types,
etc.). Next, things we omitted but which we do not consider essentially difficult (such
as type information in declarations) and, finally, a major omission: We have no func-—
tion designators inexpressions, nor do we allow procedure identifiers as parameters.

There is a vast amount of literature dealing with the same issues. Many of the

papers take an operational approach, defining semantics in terms of abstract machines.

This we wholly circumvent in the present paper, though it is in fact needed for the
justification of the least fixed point approach to recursion (to be given along the
lines of De Bakker [1]). Many others take their starting point in some powerful mathe-—
matical system (universal algebra, category theory), but tend to fall short of a treat-—
ment of the subtler points of the programming notions at hand. A proof-theoretic ap-
proach can be found e.g. in Hoare and Wirth [8] or Igarashi, London and Luckham [9],
but we must confess not to be able to follow their treatment of procedures and param-—
eter passing. There are also a few papers dealing with the relationship between seman-
tics and proof theory, such as Donahue [4], Cook [3] and Gorelick [5]. Again, the ap-
proach of these papers differs from the present one. E.g., the first one omits treat-
ment of recursion, and the other two treat locality in a way which differs from ours
(cf. the block rule in our section 4). On the other hand, we recommend the papers by
Cook and Gorelick for a discussion of substitution, a topic to which we pay little

attention below.

2. SYNTAX

We present a language which is essentially a subset of PASCAL, though there are
some notational variants introduced in order to facilitate the presentation. We start

with the following classes of symbols:

SV = {x,y,2z2,u,...}: the class of simple variables,

AV = {a,b,...} : the class of array variables,
B = {n,m,...} : the class of <nteger constants,
P = {PyQysss} : the class of procedure symbols.

For technical reasons which will become clear below (def. 2.1, def. 3.3), we
assume some well-ordering of these four sets.
Using a self-explanatory variant of BNF, we now define the classes U (variables),

IE (Znteger expressions), BE (boolean expressions), and S (statements):

/' (with elements V,Wwy...) vii= x|alt]

IE (with elements r,s,t,...) t::= v|n|t1+t2|t1*t2| if p then tl else t2 £i
BE (with elements p,qy...) pii= Ezgslzgliglt]=t2|t]>t2|p13p2’plAp2|ﬂp

S (with elements S,SO,...) S:i:= v:=t|SI;SZ|i£ p then S1 else S2 fil

begin new x; S end|P(t,v).

Remarks

1. We shall use the notation £, 3ty (plzpz, S]ESZ) to indicate that t and ty (p1 and
Pys S] and Sz) are identical sequences of symbols.

2. Whenever convenient, we shall use parentheses to enhance readability or to avoid
ambiguity. Syntactic specification of this is omitted.

3. (Variables) Note that we have simple variables (x,y,z,u) and subscripted variables

(alt],bls],...), and that an arbitrary variable v may be both simple or subscripted.

4, (Expressions) The syntax of IE and BE has been kept simple on purpose. A minor ex-
tension would be to introduce additional operations. On the other hand, the inclu-
sion of functions designators within IE or BE presumably would constitute a major

extension, requiring substantial additional analysis below.

5. (Statements) In S we have: assignment, sequential composition, conditionals, blocks,
and procedure calls. The last two cases require further comment:
6. (Blocks) We restrict ourselves to declarations of simple variables without type in-

formation. This is motivated by our wish to treat declarations only in sofar as
needed for the analysis of parameter passing.

7. (Procedures) Throughout the paper, we restrict ourselves to the case that we have
only one procedure declaration, given in the form

(2.1) Peval x - var y - SO

with the following conventions

() P e P, x,y ¢ SV, SO e S, with x # y.

(B) SO is the procedure body, x the formal value parameter, y the formal variable
parameter.

(y) In a call P(t,v), t is the actual (e IE) corresponding to the formal x, and
v (e V) corresponds to y.

(8) The declaration (2.1) is assumed to be '"globally" available; a call P(t,v) al-
ways refers to (2.1) as corresponding declaration.

(In PASCAL, one would write for (2.1):

procedure P(x:integer,var y:integer);So).

Extension to a treatment of systems of declarations is reasonably straightfor-

ward (see e.g. [1]), and omitted here mainly for reasons of space; extension to

any number of (value and variable) parameters is trivial.

Substitution plays an important role below, both in semantics and proof theory
(assignment, locality, parameter mechanisms). In particular, we define
- S[v/x]: substitute the (arbitrary) variable v for the simple variable x in S;
- s[t/v] and plt/v]: substitute the integer expression t for the variable v in s or p.
The first kind of substitution is defined in the standard way using the notions of free
and bound occurrence of a simple variable in a statement (An occurrence of x in S 1is
bound whenever it is within a substatement of S of the form begin new X;S] end. All
other occurrences of x in S are free.) The second kind of substitution, which includes
the case of substitution for a subscripted variable, was introduced in De Bakker [2].
We refer to that paper for a detailed account of this, in particular of its application

in proving correctness of assignment statements.
. DEFINITION 2.1. (Substitution in a statement)

a. (w:=t)lv/x] = (wlv/x1:=tlv/x])
b. (Sl;Sz)Ev/x] = (S][V/X];Sz[v/x])

c. (if p then S1 else S2 fi)lv/x] = if plv/x] then Sl[v/x] else Szfv/x] fi
d. (begin new z;S end)[v/x] = begin new z;S end, if x = 2z
- = begin new z;S[v/x] end, if x # z and z does not occur
free in v
= begin Egg'z';s[z'/z][v/x] end, if x Z z and z occurs
free in v, where z' is the first variable # x mot occur-

ring free in v or S

e. P(t,w)[v/x] = P(tlv/x],wlv/x]).

DEFINITION 2.2. (Substitution in an expression)
a. The definitions of s[t/v] and p[t/v] are straightforwardly reduced by formula induc-
tion to that of w[t/v], for some w ¢ V.
b. We distinguish two cases: v =x, and v =a[s].
(o) x[t/x] = ¢, ylt/x] =y (xty), alsllt/x] = alslt/x]1]
(B) x[t/als]]= x, bls'llt/als]1] = bls'[t/als]]1] (a#b),
als'1(t/als]] = if s'[t/als]] = s then t else als'[t/als]]] fi.

Examples
1. (begin new y; x:=alyl; P(x+y+z, alx]) end)[y/x] =
begin new y'; y:=aly'l]; P(y+y'+z, alyl) end.
2. x[1/alal1]]] = x, blL2][1/alal1]]] = bL21],
alal2]1101/alal2]]] = if(if 2 = a[2] then 1 else a[2] fi) = a[2]

then 1 else a[if 2 = a[2] then 1 else a[2] fil fi.

Observe that the last expression is semantically (section 3) (though not syntactic-—

cally) equal to if a[2] = 2 then a[1] else 1 fi.

3. DENOTATIONAL SEMANTICS

For any two sets K, L[, let (K~ L) ((K E;;? L)) denote the set of all functions
(all partial functions) from K to L.

We define the meaning M of the various types of statements in our language yield-
ing, for S € S, as a result a partial function M(S) operating on an environment-store
pair yielding a new store: M(S)(e,o) = o',

As starting point we take the set A = {a,B,...} of addresses and the set I =
{v,us...} of integers. Again, we assume these to be well-ordered. Let = {o0,0',...}be
the set of stores, i.e. L = (A > 1), and let Env = {e,e’',...} be the set of environ-
ments, i.e., of certain partial, 1-1 functions from SV u (AUxI) to A. More specifi-
cally, we require that each € is defined on a finite subset of SV, and on all elements
AV x 1. Thus, for each x € SV, e(x) ¢ A may be defined, and for each a ¢ AV and v ¢ I,
e(a,v) 75 defined. (For a subscripted variable als], if s has the current value v,
e(a,v) yields the address corresponding to a[s]. The assumption that e(a,v) is always
defined stems from the fact that we study (explicit) declarations of simple variables

only. Array variables may be considered as (implicitly) declared globally.) Next, we

