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Preface

This book has its origin in a long series of lectures given at the Institute for
Theoretical Physics, Warsaw University. It is addressed to graduate students and
to young research workers in theoretical physics who have some knowledge of
quantum field theory in its canonical formulation, for instance at the level of two
volumes by Bjorken & Drell (1964, 1965). The book is intended to be a relatively
concise reference to some of the field theoretical tools used in contemporary research
in the theory of fundamental interactions. It is a technical book and not easy
reading. Physical problems are discussed only as illustrations of certain theoretical
ideas and of computational methods. No attempt has been made to review
systematically the present status of the theory of fundamental interactions.

I am grateful to Wojciech Krolikowski, Maurice Jacob and Peter Landshoff for
their interest in this work and strong encouragement. My warm thanks go to
Antonio Bassetto, Wilfried Buchmiiller, W ojciech Krolikowski, Heinrich Leutwyler,
Peter Minkowski, Olivier Piguet, Jacek Prentki, Marco Roncadelli, Henri Ruegg
and Wojtek Zakrzewski for reading various chapters of this book and for many
useful comments, and especially to Peter Landshoff for reading most of the
preliminary manuscript.

I am also grateful to several of my younger colleagues at the Institute for
Theoretical Physics in Warsaw for their stimulating interactions. My thanks go to
Andrzej Czechowski for his collaboration at the early stage of this project and for
numerous useful discussions. I am grateful to Wojciech Debski, Marek Olechowski,
Jacek Pawelczyk, Andrzej Turski, Robert Budzynski, Krzysztof Meissner and
Michal Spalinski, and particularly to Pawe]l Krawczyk for checking a large part
of calculations contained in this book.

Finally my thanks go to Zofia ZioJkowska for her contribution to the preparation
of the manuscript.

Warsaw, 1985 Stefan Pokorski
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1

Introduction

1.1 Gauge invariance

It seems appropriate to begin this book by quoting the following experimental
information (Review of Particle Properties 1984):

electron life-time : "> 2 x 10?2 years
neutron life-time for the electric charge nonconserving

decays (n — p + neutrals) 2 10° years
proton life-time > 1032 years
photon mass <6 x 10722 MeV
neutrino (v,) mass <46 x 10" MeV

From the first three lines of this Table we see that the conservation of the electric
charge is proved experimentally much worse than the conservation of the baryonic
charge. Nevertheless, nobody is seriously contesting electric charge conservation
whereas experiments searching for proton decay belong to the present frontiers
in physics. The reason lies in the general conviction that the theory of electro-
magnetism has gauge symmetry' whereas no gauge invariance principle can be
invoked to protect baryonic charge conservation. Exact gauge invariance protects
the conservation of the electric charge. It also implies the masslessness of the
photon and as seen from the Table the present experimental limit on the photon
mass is indeed many orders of magnitude bettersthan for the other ‘massless’
particle: the electron neutrino.

It should be stressed at this point that U(l) gauge invariance implies global
U(1) invariance but, of course, the opposite is not true. A tiny mass for the photon
would destroy the gauge invariance of electrodynamics but leave unaffected all its
Earth-bound effects, including the quantum ones, as long as the electric charge

' The reader who is not familiar with notions of global symmetry and gauge symmetry is
advised to read Section 1.3 first.
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was conserved. In particular, such a theory is also renormalizable (Matthews 1949,
Boulware 1970, Salam & Strathdee 1970) since longitudinally polarized photons
decouple from the conserved current.

Thus one may ask what are the virtues of gauge invariance? We trust electric
charge conservation, because we expect gauge invariance is behind it, and we
doubt baryon charge conservation, though this has been much better proved
experimentally than the former one. We do not trust global symmetries as
candidates for underlying first principles! A global symmetry gives us a freedom
of convention: choice of a reference frame (the phase of the electron wave function
for the U(1) symmetry of electrodynamics). It can be redefined freely, provided
that all observers in the universe redefine it in exactly the same way. This sounds
unphysical and we are led to propose that this freedom of convention is present
independently at every space-time point or is not present at all as an exact law
of nature. (Approximate global symmetries may, nevertheless, be and are very
useful in describing the fundamental interactions.) This aesthetical argument may
not convince everybody. Those who remain sceptical should then remember that
gauge theories give an economical description of the laws of nature based on
well-defined underlying principles which has been phenomenologically success-
ful. As we know at present, this statement accounts not only for electrodynamics -
with its U(1) abelian gauge symmetry, but also for weak and strong interactions
successfully described by gauge field theories with non-abelian symmetry groups:
SU(2) x U(1) and SU(3), respectively. And non-abelian gauge symmetries are more
restrictive and more profound than the U(1) symmetry. In particular, non-abelian
gauge bosons carry the group charges and their mass terms in the lagrangian
would in general, unless introduced by spontaneous symmetry breaking, destroy
not only the gauge symmetry but also the current conservation and therefore the
renormalizability of the theory. The standard experimental evidence for gauge
theories of weak and strong interactions is briefly summarized in the next Section.

We end this Section with a short historical ‘footnote’ (Pauli 1933). The
terminology ‘gauge invariance’ can be traced back to Weyl’s studies (Weyl 1919)
of invariance under space-time-dependent changes of gauge (scale) in an attempt
to unify gravity and electromagnetism. This attempt proved, however, unsuccessful.
In 1926, Fock observed (Fock 1926) that one could base quantum electrodynamics
(QED) of scalar particles on the operator

., 0 e
T T
where A, is theelectromagnetic four-potential and that the equations were invariant
under the transformation

0f(x)

ox* ’

which he called gradient transformation. London (1927) pointed out the similarity

A,— A, + @ — D exp [ief(x)/hc]
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of Fock’s to Weyl’s earlier work: instead of Weyl’s scale change a local phase
change was considered by Fock. In 1929, Weyl studied invariance under this phase
change but he kept unchanged his earlier terminology ‘gauge invariance’ (Wey!
1929). The concept of gauge transformations was generalized to non-abelian gauge
groups by Yang & Mills (1954). Similar ideas were also proposed much earlier by
Klein (1939) and by Shaw (1955).

1.2 Reasons for gauge theories of strong and electroweak interactions

We summarize very briefly the standard arguments in favour of gauge theories
in elementary particle physics. Both quantum chromodynamics (QCD) and
the: Glashow—Salam-Weinberg theory are syntheses of our understanding of
fundamental interactions progressing over many past years.

QCD

QCD emerged as a development of the Gell-Mann-Zweig quark model for hadrons
(Gell-Mann 1964, Zweig 1964). The latter was postulated as a rationale for the
successful SU(3) classification of hadrons (today one should say flavour SU(3)).
Assigning quarks q to the fundamental representation of SU(3), not realized by
any known hadrons, and giving them spin one-half one obtains the pheno-
menologically successful SU(3) and SU(6) schemes. SU(6) is obtained by adjoining
the group SU(2) of spin rotation to the internal symmetry group SU(3) for baryons
(9qq) and mesons (qq). In particular, the known hadrons indeed realize only those
representations of SU(3) which are given by the composite model. The quark model
for hadrons, successful as it was, appeared, however, to have difficulties in recon-
ciling the Fermi statistics for quarks with the most natural assumption that in the
lowest-lying hadronic states all the relative angular momenta among constituent
quarks vanish (s-wave states). Thus, baryon wave functions should be antisymmetric
in spin and flavour degrees of freedom. This is not the case in the original quark
model as can be immediately seen from inspection of the A* *(3*) wave function
which must be uTuTuT; u denotes the quark with electric charge Q = 3, the arrow
denotes spin S, =4 for each quark.

The difficulty can be resolved by postulating a new internal quantum number
for quarks which has been called colour (Greenberg 1964, Han & Nambu 1965,
Nambu 1966 and Bardeen, Fritzsch & Gell-Mann 1973). If a quark of each flavour
has three, otherwise indistinguishable, colour states, Fermi statistics is saved by
using a totally antisymmetric colour wave function éegu,Tu,Tu. 1. Assuming
furthermore that (i) strong interactions are invariant under global SU(3).,10., trans-
formations (the states may then be classified by their SU(3)..;,., representation)
(if) physical hadrons are colourless i.e. they are singlets under SU(3).,10ur (quark
confinement) we can understand why only qqq and qq states, and not qq or qqqq
etc., exist in nature: the singlet representation appears only in the 3 x 3 x 3 and
3 x 3 products.
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Fig. 1.1 The process e e~ —y — hadrons in the parton modet. The sum is taken
over all hadronic states in the reaction e*e” —y—qq — hadrons.

The concept of colour is supported also by at least {wo other, strong arguments.
One is based on the parton model (Feynman 1972) approach to the reaction

e*e” —hadrons. The total cross section for this process is then given by the
diagrara in Fig. 1.1 and the ratio

o{e"e” —hadrons]
g e —hadrons) (1.1)
ole"e —u"u}
is predicted to be
2y Q7 v
= ;2 ZQQ—2><(—f+ﬂ+~§ﬁ-+%,~+»é+-~}
=4t (including quarks up to b) (1.2

The experimental vaiue of R is in good agreement with this prediction and in poor
agresment with the colourless prediction 4

Yet another reason for colour is provided by the decay % 2y. Here again the
number of quark states matters in explaining the width of n° - 2y. This problem
will be discussed ia more detail in Chapter 12,

The concept of colour certainly underlies what we belicve to be the true theory
of strong interactions, namely QCD. However the theory also has several other
basic features which are parily suggssted by experimental observations and partly
required by theoretical consistency. Firstly, it is asswmed that sirong interactions
act on the colour guantum numbers and only on them. Expertmentally there is
no evidence for any flavour dependence of strong forces; all flavour-dependent
effects can be explained by quark mass differences and the origin of the quark
masses, though not satisfactorily understood yet, is expected to be outside of QCD.
In addition, only colour symmetry can be assumed to be an exact symmelry
(flavour symimetry is evidently broken) and this, combined with the assumption
that it is a gauge symmetry (Fan & Nambu 1965, Fritesch, Gell-Mann & Leutwyler
1973), has profound implications: asymptotic freedom (Gross & Wilezek 1973,
Politzer 1973) and presumably, though not proven, confinement of quarks. Both
are welcome features. Asymptotic freedom means that the forees become negligible
at short distances and consequently the interaction between quarks by exchange
of non-abelian gauge fields (gluons) is consistent with the successful, as the first
approximation, dgu’lp ion of the deep inelastic scattering in the frame-work of
the parion model. 1t has been shown that only non-abelian gauge theories are
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asymptotically free (Coleman & Gross 1973). Confinement of the colour quantum
numbers, i.e. of quarks and gluons, has not yet been proved to follow from QCD
but it is likely to be true, reflecting strongly singular structure of the non-abelian
gauge theory in the IR region. Once we assume colourful quarks as elementary
objects in hadrons, confinement of colour is desirable in view of the so far unsuccess-
ful experimental search for free quarks and to avoid a proliferation of unwanted
states. )

An important line of argument in favour of gluons as vector bosons begins with
approximate chiral symmetry of strong interactions (Chapter 9). Coupling of
fermions with vector and axial-vector fields, but not with scalars or pseudoscalars,
is chirally invariant. A theory with axial-vector gluons based on the SU(3) group
cannot be consistently renormalized because of anomalies (Chapter 12). Thus we
arrive at vector gluon interaction.

In recent years there has been a lot of research in QCD perturbation theory
neglecting the unsolved confinement problem. Of course this cannot be fully satis-
factory since experimenters collide hadrons and not quarks and gluons. One can
nevertheless argue that it is a justifiable approximation at short distances. Thus,
at its present stage the theory provides us with calculable corrections to the free-field
behaviour of quarks and gluons in the parton model and can be tested in the deep
inelastic region. Given the accuracy of the calculations and of the experimental
data one cannot claim yet to have strongly positive experimental verification of
perturbative QCD predictions. However, experimental results are certainly
consistent with QCD (in particular jet physics provides us already with good
evidence for the vector nature of gluons) and in view of its elegance and self-
consistency there are few sceptical of its chance of being the theory of strong
interactions: :

Electroweak theory

There is, at present, impressive experimental evidence for the electroweak gauge
theory with the gauge symmetry spontaneously broken. To introduce the Glashow—
Salam-Weinberg theory we recall first that the effective Fermi lagrangian for the
charged-current weak interactions, valid at low energies, has conventionally been
taken to be (for a systematic account of the weak interactions phenomenology-see
e.g. Gasiorowicz 1966 and more recently Abers & Lee 1973 and Taylor 1976)

L oe(x) = /26 jL(x) j*(x) ’ (1.3)
where the Fermi f-decay constant Gy = 1.165 x 107°GeV ™2 (h=c = 1) and the
~ charged current j,(x) is composed of several pieces, each with V-A structure. In
terms of the lepton and quark fields it can be written as follows

F=Y TR ' (1.4)
t
with
Tt =4 +ir?)=T' +iT? - -



6 1 Introduction

where 7 are Pauli matrices and for weak interactions, as known in 1960s,

wonf(HEME) e

The subscript L stands for the left-handed fermions. The prime superscript indicates
the existence of mixing of the quark fields observed in strong interactions (mass

eigenstates):
d' =dcos O¢ + ssin O¢

where the angle ® is known as the Cabibbo angle and has been measured in
weak decays of strange particles.

We now extend the Fermi—Cabibbo theory by several additional assumptions.
Firstly, we postulate the existence of a symmetry group, global for the time being,
for the weak interactions. Having the current (1.4) it is natural to postulate SU(2)
symmetry and consequently the existence of the neutral current corresponding to
the third generator of the SU(2)

[T+, T ]=2T? (1.6)

which would induce transitions, such as, for instance, those in Fig. 1.2 occurring
with a similar strength to the charged-current reactions. Neutral-current weak
transitions with the expected strength have been discovered at CERN (Hasert
et al. 1973). However, they (i) are not of purely V—A character as expected from
the SU(2) model, and (ii) always conserve strangeness to a very good accuracy.
According to the existing experimental limits the strangeness non-conserving
neutral-current transitions (like K{—u*u~ or K°—K?°) are suppressed by
many orders of magnitude as compared to the standard weak processes. Both
factors call for further invention in searching for a realistic theory of weak inter-
actions. Glashow, Iliopoulos & Maiani (1970) have discovered that the problem
of the strangeness non-conserving neutral current is solved if the set of fermionic
doublets Wi is completed with a fourth one

¢ :
<s’>' §'= —dsinO¢+ scos O.

One can immediately check that with the s’ orthogonal to d’ the neutral current
is diagonal in flavour. Thus, they have predicted the existence of the charm quark
discovered later at Slac (Aubert et al. 1974, Augustin ef al. 1974). Also the doublet
classification of the left-handed fermions with the equal number of lepton and
quark doublets, now further confirmed by the experimental discovery of the

v, d (¢
T an b
doublets', has emerged as an important property of weak interactions. This has

" For the t quark the experimental situation is still unclear.
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Fig. 1.2 Some neutral-current weak transitions.

profound implications for a successful extension of the effective model into a
non-abelian local gauge field theory: it assures the cancellation of the chiral anomaly
and consequently the renormalizability of the theory. A highly consistent scheme
begins to be expected.

The next step towards the final form of the Glashow—-Salam-Weinberg theory
is a ‘unification’ of weak and electromagnetic interactions (Schwinger 1957,
Glashow 1961, Salam & Ward 1964). Thus, we want the electric charge Q also to
be the generator of the symmetry group of our theory. To achieve this in the
most economical way we notice that for the left-handed doublets of fermions we
can define a new quantum number Y (weak hypercharge)

1y=0-1° (17)

such that each doublet of the left-handed fermions is an eigenvector of the operator
Y(eg Y =Y, =—1) Therefore Y commutes with the generators of SU(2) and
including the right-handed fermions by the prescription 1Y = Q (they are singlets
with respects to SU(2)) we arrive at the SU(2) x U(1) symmetry group for the
electroweak interactions. The U(1) current reads

24 =Y LYWL+ D R YiR+ Y Gk  Yak (1.8)

where [y =3%(1 +y5)I' and I' and ¢' are lepton and quark fields, respectively.
According to (1.7), the electromagnetic current can be written as follows

S =Jh+ LW TH
=Sl + a0 (1.9)

The SU(2) x U(1) group is the minimal one which contains the electromagnetic
and weak currents. With electromagnetism being described by a gauge field A,
our minimal model ‘unifying’ electromagnetic and weak interactions requires the
Yang-Mills gauge fields W and B, to couple to the SU(2) x U(1) currents giving



