GRADUATE STUDENT SERIES IN PHYSICS

INTRODUCTION TO GAUGE FIELD THEORY

DAVID BAILIN

ALEXANDER LOVE

GRADUATE STUDENT SERIES IN PHYSICS

Series Editor: Professor Douglas F Brewer, M.A., D.Phil. Professor of Experimental Physics, University of Sussex

INTRODUCTION TO GAUGE FIELD THEORY

DAVID BAILIN

School of Mathematical and Physical Sciences University of Sussex

ALEXANDER LOVE

Department of Physics Royal Holloway and Bedford New College, University of London

ADAM HILGER, BRISTOL AND BOSTON
Published in association with the University of Sussex Press

© IOP Publishing Limited 1986

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publisher.

British Library Cataloguing in Publication Data

Bailin, David

Introduction to gauge field theory.

1. Gauge fields (Physics) 2. Particles (Nuclear physics)

I. Title II. Love, Alexander 539.7'21 QC793.3.F5

ISBN 0-85274-817-5 ISBN 0-85274-818-3 Pbk

Published under the Adam Hilger imprint by IOP Publishing Limited Techno House, Redcliffe Way, Bristol, BS1 6NX PO Box 230, Accord, MA 02018, USA in association with the University of Sussex Press

Typeset by Mid-County Press, London
Printed in Great Britain by J W Arrowsmith Ltd, Bristol

PREFACE

In the course of the 1970s important developments in the substance and form of particle physics have gradually rendered the excellent field theory texts of the 1950s and 1960s inadequate to the needs of postgraduate students. The main development in the substance of particle physics has been the emergence of gauge field theory as the basic framework for theories of the weak, electromagnetic and strong interactions. The main development on the formal side has been the increasing use of path (or functional) integral methods in the manipulation of quantum field theory, and the emphasis on the generating functionals for Green functions as basic objects in the theory. This latter development has gone hand-in-hand with the former because the comparative complexity and subtlety of non-Abelian gauge field theory has put efficient methods of proof and calculation at a premium.

It has been our objective in this book to introduce gauge field theory to the postgraduate student of theoretical particle physics entirely from a path integral standpoint without any reliance on the more traditional method of canonical quantisation. We have assumed that the reader already has a knowledge of relativistic quantum mechanics, but we have not assumed any prior knowledge of quantum field theory. We believe that it is possible for the postgraduate student to make his first encounter with scalar field theory in the path integral formalism, and to proceed from there to gauge field theory. No attempt at mathematical rigour has been made, though we have found it appropriate to indicate how well-defined path integrals may be obtained by an analytic continuation to Euclidean space.

We have chosen for the contents of this book those topics which we believe form a foundation for a knowledge of modern relativistic quantum field theory. Some topics inevitably had to be included, such as the path integral approach to scalar field theory, path integrals over Grassmann variables necessary for fermion field theories, the Faddeev-Popov quantisation procedure for non-Abelian gauge field theory, spontaneous breaking of symmetry in gauge theories, and the renormalisation group equation and asymptotic freedom. At a more concrete level this enables us to discuss quantum chromodynamics (QCD) and electroweak theory. Some topics have been included as foundation material which might not have appeared if the book had been written at a slightly earlier date. For example, we have inserted a chapter on field theory at non-zero temperature, in view of the large body of

literature that now exists on the application of gauge field theory to cosmology. We have also included a chapter on grand unified theory. Some topics we have omitted from this introductory text, such as an extensive discussion of the results of perturbative QCD (though some applications have been discussed in the text), non-perturbative QCD, and supersymmetry.

We owe much to Professor R G Moorhouse who suggested that we should write this book, and to many colleagues, including P Frampton, A Sirlin, J Cole, T Muta, H F Jones, D R T Jones, D Lancaster, J Fleischer, Z Hioki and G Barton, for the physics they have taught us. We are very grateful to Mrs S Pearson and Ms A Clark for their very careful and speedy typing of the manuscript. Finally, we are greatly indebted to our wives, to whom this book is dedicated, for their invaluable encouragement throughout the writing of this book.

David Bailin Alexander Love

CONTENTS

		and the second s	
Pre	face	and the second s	VII
			1 9
1	Dash	The second secon	1
1	Path	integrals Problem	. 1
		References	4
	1	References	4
		· ·	
2	Path	integrals in non-relativistic quantum mechanics	5
	2.1	Transition amplitudes as path integrals	5
	2.2	The ground-state-to-ground-state amplitude, $W[J]$	8
	2.3	Ground-state expectation values from $W[J]$	11
		Problems	14
		References	14
3	C1	in C.H.A.	15
3		sical field theory	15
	3.1	Euler-Lagrange equations	15
	3.3	Noether's theorem	18 -
		Scalar field theory	20
	3.4 3.5	Spinor field theory	25
	3.3	Massless vector field theory Problems	33
		References	37
		References	38
4	Quan	ntum field theory of a scalar field	39
	4.1	The generating functional $W[J]$	39
	4.2	The generating functional for free-field theory	42
	4.3	Green functions for free-field theory	45
	4.4	The effective action and one-particle-irreducible	4
		Green functions	47
		Problems	50
		References	50

5	Scatt	tering amplitudes	51
	5.1	Scattering amplitude in quantum mechanics	51
	5.2	Scattering amplitude in quantum field theory	54
		References	59
		*	
6	Feyn	man rules for $\lambda \varphi^4$ theory	60
	6.1	Perturbation theory	60
	6.2	Momentum space Feynman rules	64
	6.3	One-particle-irreducible Green functions	66
	6.4	Scattering amplitudes	67
	6.5	Calculation of the scattering cross section	70
		Problems	73
		References	73
7	Reno	ormalisation of λφ ⁴ theory	74
	7.1	Physical motivation for renormalisation	74
	7.2	Dimensional regularisation	79
	7.3	Evaluation of Feynman integrals	81
	7.4	Renormalisation of $\lambda \varphi^4$ theory at one-loop order	85
	7.5	Renormalisation schemes	90
		Problems	94
		References	94
8	Qua	ntum field theory with fermions	96
	8.1	Path integrals over Grassmann variables	96
	8.2 -	The generating functional for spinor field theories	99
	8.3	Propagator for the Dirac field	100
	8.4	Renormalisable theories of Dirac fields and scalar	
		fields	101
	8.5	Feynman rules for Yukawa interactions	103
	8.6	Massless fermions	106
	8.7	Scattering amplitudes with fermions	107
		Problems	109
		References	109
9	Gau	ge field theories	110
9	9.1	Abelian gauge field theory	110
	9.2	Non-Abelian gauge field theories	112
	9.3	Field equations for gauge field theories	115
		References	115

CO		

хi

10	Fevn	man rules for quantum chromodynamics and	
	•	um electrodynamics	116
	10.1	Quantum chromodynamics	116
	10.2	Problems in quantising gauge field theories	116
	10.3	An analogy with ordinary integrals	118
	10.4	Quantisation of gauge field theory	119
	10.5	Gauge fixing terms and Faddeev-Popov ghosts	123
	10.6	Feynman rules for gauge field theories	125
	10.7	Scattering amplitudes with gauge fields	129
		Problems	129
		References	130
		en lañ en en de	
11		rmalisation of QCD and QED at one-loop order	131
	11.1	Counter terms for gauge field theories	131
	11.2		133
	11.3	The electron anomalous magnetic moment	140
		Problems	143
		References	143
12	OCD :	and asymptotic freedom	144
2 200	12.1	The renormalisation group equation	144
	12.2	Deep inelastic electron-nucleon scattering	149
	12.3	The Wilson operator product expansion	152
	12.4	Wilson coefficients and moments of structure	
	1 40. 1	functions	154
	12.5	Renormalisation group equation for Wilson	
	12.5	coefficients	157
	12.6	Calculation of anomalous dimensions	159
	12.7	Comparison with experiment, and Λ_{OCD}	163
	12.8	e ⁺ e ⁻ annihilation	165
	1 550 1	Problems	167
		References	168
		*C.	
			* * * * *
13		taneous symmetry breaking	169
	13.1	Introduction	169
	13.2	Spontaneous symmetry breaking in a ferromagnet	172
	13.3	Spontaneous breaking of a discrete symmetry	173
	13.4	Spontaneous breaking of a continuous global	15.
	111	symmetry	175
	13.5	The Higgs mechanism	180
	13.6	The Higgs mechanism in non-Abelian theories	185

CONTENTS

	. 13.7	Fermion masses from spontaneous symmetry breaking	190
	13.8	Magnetic monopoles	193
	13.9	The effective potential in one-loop order	200
		Problems	212
	3.2	References	212
14	Fevn	man rules for electroweak theory	214
	14.1	SU(2) × U(1) invariance and electroweak interactions	214
	14.2	Spontaneous breaking of $SU(2) \times U(1)$ local gauge	
		invariance	219
	14.3	Feynman rules for the vertices	224
	14.4	Tests of electroweak theory	232
	14.5	Inclusion of hadrons	236
		Problems	242
		References	242
			2 12
		A company of the comp	
15	Reno	rmalisation of electroweak theory	244
	15.1	Electroweak theory renormalisation schemes	244
	F4.	Definition of the renormalised parameters	246
		Evaluation of the renormalisation constants	258
		Radiative corrections to muon decay	269
	15.5		272
		Problems	280
		References	281
		The second secon	201
16	Gran	d unified theory	282
	16.1	Philosophy	282
	16.2	SU(5) grand unified theory	283
	16.3	The grand unification scale and $\theta_{\rm w}$	289
	16.4	Spontaneous symmetry breaking for SU(5) grand	209
	. 11	unified theory	291
	16.5	Fermion masses in SU(5)	294
	16.6		297
	. 0.0	Problems	298
	-01	References	
		Telefolioto	298
17	Field	theories at finite temperature	200
a /	17.1	The partition function for scalar field theory	299
	17.2		299
	17.3	Partition function for free scalar field theory Partition function for gauge vector become	301
	41.0	THE PROPERTY OF THE PROPERTY O	11 764

	CONTENTS	xiii
	artition function for fermions	306
	emperature Green functions and generating	200
4	nctionals	308
	nite temperature generating functional for a	311
30.00	eynman rules for temperature Green functions	312
	he finite temperature effective potential	312
17.9 Fi	nite temperature effective potential at one-loop	
-	der	314
	ne Higgs model at finite temperature	318
	ectroweak theory at finite temperature	320
	rand unified theory at finite temperature	322
	rst-order phase transitions	323
	oblems eferences	327
Ke	rierences	328
Appendix A:	Feynman integrals in 2ω -dimensional space	329
Appendix B:	S-matrix elements are independent of ξ	330
Appendix C:	C.1 Vector-vector-scalar-scalar vertices	335
•	C.2 Vertices involving four scalars	337
Appendix D:	SU(5) λ matrices	339
Appendix E:	Matsubara frequency sums	342
Index		343

× ×

reserved of econoccents of the color by Stock an integral is reflied a color by lunction. I have notice that it is the color of the col

There are two widely used approaches to quantum field theory. The first is based on field operators and the canonical quantisation of these operator fields, and will not be discussed in this book. The second approach, as we shall see in Chapter 4, involves path integrals¹ over classical fields, and it is upon this latter approach that this book relies for its derivations. In this chapter, the idea of path integrals (or functional integrals) will be developed in a very intuitive way without any attempt at mathematical precision or rigour. Instead, the analogy between vectors and functions, and between matrices and differential operators on functions will be exploited extensively. Since very few path integrals can be performed exactly, we shall concentrate on Gaussian path integrals². These are important in their own right, but much more so because they can be used in approximation schemes when the exact path integral is intractable, as we shall see in later chapters.

Our starting point is the ordinary Gaussian integral

$$\int_{-\infty}^{\infty} dy \exp(-\frac{1}{2}ay^2) = (2\pi)^{1/2}a^{-1/2} \qquad a > 0.$$
 (1.1)

This may be generalised to the integral over n real variables

$$\int_{-\infty}^{\infty} dy_1 \dots dy_n \exp(-\frac{1}{2} Y^{\mathsf{T}} \mathbf{A} Y) = (2\pi)^{n/2} (\det \mathbf{A})^{-1/2}$$
 (1.2)

where **A** is a real symmetric positive definite matrix, Y is the column vector with components (y_1, \dots, y_n) , the transpose of Y is denoted by Y^T , and each integral is understood to be over the range $(-\infty, \infty)$. Equation (1.2) is easily derived by diagonalising **A**, when the n-dimensional integration becomes a product of n integrals of the form (1.1). It will prove convenient to write

$$\det \mathbf{A} = \exp \ln \det \mathbf{A} = \exp \operatorname{Tr} \ln \mathbf{A} \tag{1.3}$$

where Tr denotes the trace of the matrix. The identity

(11.1) (q.
$$A$$
 q.) q.s. (In det $A = Tr \ln A$ (1.4)

is most easily proved by diagonalising A. Equation (1.2) can now be written as

$$(2\pi)^{-n/2} \int_{-\infty}^{\infty} dy_1 \dots dy_n \exp(-\frac{1}{2}Y^{\mathsf{T}} \mathbf{A} Y) = \exp(-\frac{1}{2}\operatorname{Tr} \ln \mathbf{A}). \tag{1.5}$$

We wish to generalise (1.5) to the case where the integration is over the continuous infinity of components of a function $\varphi(x)$ rather than over the finite

此为试读,需要完整PDF请访问: www.ertongbook.com

number of components of the column vector Y. Such an integral is called a path (or functional) integral. Proceeding intuitively we write

$$\int \mathcal{D}\varphi \exp\left(-\frac{1}{2}\int dx' \int dx \varphi(x') A(x', x) \varphi(x)\right) = \exp(-\frac{1}{2}\operatorname{Tr} \ln \mathbf{A}) \quad (1.6)$$

where we use the symbol \mathcal{D} for path integration, and we assume that the integral has been defined in such a way as to remove any normalisation factor (corresponding to the factor $(2\pi)^{-n/2}$ in (1.5)). The integrals over x' and x are assumed to be one-dimensional integrals over the range $(-\infty, \infty)$. However, the treatment generalises trivially to the case where dx is replaced by d^4x , and the integration is over the whole four-dimensional space. The trace in (1.6) may be evaluated by Fourier transforming. For example, consider the case

where r is a constant. (This is closely related to situations we shall encounter in later chapters.) The one-dimensional Dirac delta function has the integral representation

$$\delta(x'-x) = \int_{-\infty}^{\infty} \frac{\mathrm{d}p}{2\pi} \,\mathrm{e}^{\mathrm{i}p(x'-x)}. \tag{1.8}$$

Thus

$$A(x',x) = \int_{-\infty}^{\infty} \frac{\mathrm{d}p}{2\pi} \, \mathrm{e}^{\mathrm{i}p(x'-x)} \, (p^2 + r) \tag{1.9}$$

and

Tr ln
$$\mathbf{A} = \int dx \int \frac{dp}{2\pi} \ln(p^2 + r)$$
 (1.10)

where to take the trace we have set x' = x and integrated over all values of x, since we have a continuous infinity of degrees of freedom.

A slight generalisation can be made by introducing a linear term in (1.5).

$$(2\pi)^{-n/2} \int_{-\infty}^{\infty} dy_1 \dots dy_n \exp(-\frac{1}{2}Y^{\mathsf{T}} \mathbf{A} Y + \rho^{\mathsf{T}} Y)$$

$$= \exp(-\frac{1}{2} \operatorname{Tr} \ln \mathbf{A}) \exp(\frac{1}{2} \rho^{\mathsf{T}} \mathbf{A}^{-1} \rho) \quad (1.11)$$

where ρ is a given column vector, and \mathbf{A}^{-1} exists because \mathbf{A} is positive of finite contains. Equation (1.11) is derived from (1.5) by completing the square,

$$Y^{T}AY - 2\rho^{T}Y = (Y - A^{-1}\rho)^{T}A(Y - A^{-1}\rho) - \rho^{T}A^{-1}\rho$$
 (1.12)

and making the change of variable

and that the next that
$$Y = Y - A^{-1}\rho$$
, by defining that ρ and ρ

The corresponding path integral is

$$\int \mathcal{D}\varphi \exp\left(-\frac{1}{2}\int dx' \int dx \varphi(x') A(x', x) \varphi(x) + \int dx \rho(x) \varphi(x)\right)$$

$$= \exp\left(-\frac{1}{2}\operatorname{Tr} \ln \mathbf{A}\right) \exp\left(\frac{1}{2}\int dx' \int dx \rho(x') A^{-1}(x', x) \rho(x)\right). \quad (1.14)$$

where $\rho(x)$ is a given function. In (1.14), $A^{-1}(x', x)$ is easily evaluated from the Fourier transform of A(x', x). Thus, with A(x', x) as in (1.7), we have from (1.9),

$$A^{-1}(x',x) = \int_{-\infty}^{\infty} \frac{\mathrm{d}p}{2\pi} \,\mathrm{e}^{\mathrm{i}p(x'-x)} (p^2 + r)^{-1}. \tag{1.15}$$

Equations (1.11) and (1.14) enable us to carry out somewhat more general integrals than Gaussian integrals. If we differentiate with respect to $\rho_{m_1}, \rho_{m_2}, \ldots, \rho_{m_n}$ at $\rho = 0$ in (1.11) we obtain

$$(2\pi)^{-n/2}\int_{-\infty}^{\infty}\mathrm{d}y_1\ldots\mathrm{d}y_n\,y_{m_1}\ldots y_{m_p}\exp(-\frac{1}{2}Y^{\mathsf{T}}\mathbf{A}Y)$$

=
$$\exp(-\frac{1}{2} \operatorname{Tr} \ln \mathbf{A}) (A_{m_1 m_2}^{-1} \dots A_{m_{s-1} m_s}^{-1} + \text{permutations})$$
 (1.16)

when p is even, and zero when p is odd.

Generalised to the path integral case

$$\int \mathcal{D}\varphi \, \varphi(x_1) \dots \varphi(x_p) \, \exp\left(-\frac{1}{2} \int dx' \int dx \, \varphi(x') A(x', x) \varphi(x)\right)$$

$$= \exp\left(-\frac{1}{2} \operatorname{Tr} \ln \mathbf{A}\right) (A^{-1}(x_1, x_2) \dots A^{-1}(x_{p-1}, x_p) + \text{permutations}). \quad (1.17)$$

To carry through the differentiations in the path integral case we understand the derivatives to be functional derivatives $\delta/\delta\rho(x_1),\ldots,\delta/\delta\rho(x_p)$, where by definition

$$\frac{\delta}{\delta\rho(x_i)} \left(\int dx \, \rho(x) \varphi(x) \right) = \varphi(x_i) \qquad i = 1, \dots, p.$$
 (1.18)

We have been discussing a real column vector or a real function $\varphi(x)$. The discussion is easily extended to the case of complex column vectors or functions. Thus, for example,

$$(2\pi)^{-n} \int dz_1 dz_1^* \dots dz_n dz_n^* \exp(-Z^{\dagger}AZ) = (\det A)^{-1} = \exp(-\operatorname{Tr} \ln A)$$
 (1.19)

where A is a Hermitian matrix, Z is the complex column vector with components (z_1, \ldots, z_n) , $Z^{\dagger} = (Z^*)^T$, and

$$\int dz dz^* \equiv 2 \int d(\text{Re } z) d(\text{Im } z). \tag{1.20}$$

The corresponding path integral is

$$\int \mathcal{D}\varphi \mathcal{D}\varphi^* \exp\left(-\int dx' \int dx \, \varphi^*(x') A(x', x) \varphi(x)\right) = \exp(-\operatorname{Tr} \ln \mathbf{A}). \quad (1.21)$$

So far we have been assuming that the reader is making the intuitive leap from a column vector with a finite number of components to a function with a continuous infinity of components. We can put path integrals on a (slightly) more formal basis, as follows¹. Suppose that the x and x' integrations in (1.6) are over the finite range from X to \overline{X} . We can take the limit of an infinite range of integration at the end of our discussion. Divide the range up into N+1 equal segments of length ε

Leavise than (i.i.) enable
$$X = \bar{X} = 3(1+N)$$
 entertain more general integrals. If $\bar{X} = 3(1+N)$ entertains with respect to

The corresponding path integral is

Let the steps begin at $x_0 = x, x_1, x_2, ..., x_N$, and adopt the notations

$$\varphi_i = \varphi(x_i) \qquad A_{jk} = A(x_j, x_k). \tag{1.23}$$

Then we may define the Gaussian path integral as follows:

$$\int \mathcal{D}\varphi \exp\left(-\frac{1}{2}\int dx' \int dx \, \varphi(x')A(x',x) \, \varphi(x)\right)$$

$$= \lim_{N \to \infty} (2\pi)^{-N/2} \prod_{i=1}^{N} \int d\varphi_i \exp\left(-\frac{1}{2}\sum_{j,k} \varphi_j A_{jk} \varphi_k\right)$$

$$= \lim_{N \to \infty} (2\pi)^{-N/2} \prod_{i=1}^{N} \int d\varphi_i \exp\left(-\frac{1}{2}\varphi^T \mathbf{A} \varphi\right) \qquad (1.24)$$

We have been discussing a test column yearer or a real function with

functions. Thus, for example,

where φ is the column vector with components $(\varphi_1, \ldots, \varphi_N)$, and A is the matrix with entries A_{jk} . In the case where we allow the range of integration (X, \bar{X}) to become the interval $(-\infty, \infty)$, we may perform the Gaussian integral to obtain the result of equation (1.6). We must, of course, interpret $\lim_{N\to\infty} \exp(-\frac{1}{2}\operatorname{Tr} \ln A)$, where A is the matrix, as $\exp(-\frac{1}{2}\operatorname{Tr} \ln A)$, where A is A(x', x).

Problem retrieve regular as a complex column version of contract of contract of the contract o

1.1 Derive (1.19) from (1.5).

References

1 Feynman R P and Hibbs A R 1965 Quantum Mechanics and Path Integrals (New York: McGraw-Hill)

dr. dar ... dr. dr. exp(- Z'AZ) = det A) "! = exp(- Tr ln A) (T. 19)

We follow most closely the approach of Coleman S 1973 Lectures given at the 1973 International Summer School of Physics, Ettore Majorana.

PATH INTEGRALS IN NON-RELATIVISTIC

length a becomes very small. The discussion is much simplified if the

2.1 Transition amplitudes as path integrals

It was shown by Feynman (following a lead by Dirac) that quantum mechanics could be formulated in terms of path integrals 1.2. We shall discuss this approach to quantum mechanics in some detail since it provides the key to the path integral formulation of quantum field theory. For simplicity, we shall consider in the first instance a system described by a single generalised coordinate Q, with a conjugate momentum P. When corresponding quantum mechanical operators for Q are required we shall use the notation \hat{Q}_H in the Heisenberg picture, and \hat{Q}_S in the Schödinger picture. We denote the eigenstates of \hat{Q}_S by $|q\rangle_S$:

$$\hat{Q}_{s}|q\rangle_{s} = q|q\rangle_{s}. \tag{2.1}$$

Hamiltonian is of the form

Since \hat{Q}_{H} is time-dependent, so are its eigenstates, which we denote by $|q,t\rangle$:

notional is said only
$$\hat{Q}_{H}(t)|q,t\rangle = q|q,t\rangle$$
 argum these of given $\hat{Q}_{H}(t)|q,t\rangle = q|q,t\rangle$ argum these of given $\hat{Q}_{H}(t)|q,t\rangle = q|q,t\rangle$ and

(It should, of course, be remembered that the physical state vectors, as opposed to the eigenstates of $\hat{Q}_{H}(t)$, are time-independent in the Heisenberg picture.) The relevant connections between the two pictures are

$$\hat{Q}_{H}(t) = e^{i\hat{H}t/\hbar} \hat{Q}_{S} e^{-i\hat{H}t/\hbar}$$
(2.3)

and

$$|q,t\rangle = e^{iHt/\hbar} |q\rangle_s$$
(2.4)

where \hat{H} is the (time-independent) Hamiltonian operator.

The probability amplitude that a system which was in the eigenstate $|q', t'\rangle$ at time t' will be found to have the value q'' of Q at time t'' is

$$\langle q'', t''|q', t'\rangle = {}_{S}\langle q''|e^{-iH(t'-t')/\hbar|q'}\rangle_{S}.$$
 (2.5)

This transition amplitude may be expressed as a path integral by dividing the time interval from t' to t'' into N+1 small steps of equal length ε , with

$$(2.6)$$

Let the steps begin at $t', t_1, t_2, ..., t_N$. The eigenstates of $\hat{Q}_H(t)$ form a complete

6 PATH INTEGRALS IN NON-RELATIVISTIC QUANTUM MECHANICS

set for any given value of t. Thus

$$\langle q'', t''|q', t'\rangle = \prod_{j=1}^{N} \int dq_{j} \langle q'', t''|q_{N}, t_{N}\rangle \langle q_{N}, t_{N}|q_{N-1}, t_{N-1}\rangle$$
DITRIVITATION: $\langle q_{1}, t_{1}|q', t'\rangle$. SLANDETH HTAY (2.7)

We need to study $\langle q_{j+1}, t_{j+1} | q_j, t_j \rangle$ as N becomes very large and the step length ε becomes very small. The discussion is much simplified if the Hamiltonian is of the form

$$H(Q, P) = \frac{P^2}{2m} + V(Q).$$
 (2.8)

(Simplification results because products of P with Q are not involved, and problems of order associated with the lack of commutativity of the corresponding operators are alleviated.) Applying equation (2.5) to first non-trivial order in ε ,

(2.9)
$$\langle q_{j+1}, t_{j+1} | q_j, t_j \rangle \approx \langle q_{j+1} | \mathbf{I} - \frac{\mathbf{i} \hat{H} \varepsilon}{\hbar} | q_j \rangle_{\mathbf{S}}$$

But

$$_{\mathbf{S}}\langle q_{j+1}|\hat{H}|q_{j}\rangle_{\mathbf{S}} = \left(-\frac{\hbar^{2}}{2m}\frac{\partial^{2}}{\partial q_{j}^{2}}\right)_{\mathbf{S}}\langle q_{j+1}|q_{j}\rangle_{\mathbf{S}}$$
 (2.10)

and using the usual integral representation of the Dirac δ function

$$_{s}\langle q_{j+1}|q_{j}\rangle_{s} = \delta(q_{j+1}-q_{j}) = h^{-1} \int_{-\infty}^{\infty} \frac{\mathrm{d}p_{j}}{2\pi} \exp[\mathrm{i}p_{j}(q_{j+1}-q_{j})h^{-1}]$$
 (2.11)

where we have chosen to write the integration variable as p_j/\hbar . Using (2.11) in (2.10) gives

$$s \langle q_{j+1} | \hat{H} | q_j \rangle_s = \hbar^{-1} \int \frac{\mathrm{d}p_j}{2\pi} \left(\frac{\hbar^2 p_j^2}{2m} + V(q_j) \right) \exp[ip_j (q_{j+1} - q_j) \hbar^{-1}]$$
The interpolation of the self-distribution of t

$$= \hbar^{Q_1} \int_{-\infty}^{\infty} \exp[ip_j(q_{j+1} - q_j)\hbar^{-1}] H(q_j, p_j).$$
 (2.13)

We may now rewrite (2.9) as

$$\langle q_{j+1}, t_{j+1} | q_{j}, t_{j} \rangle$$
 is the N + L + N and Fred a form of the state of the stat

$$\approx \hbar^{-1} \int \frac{\mathrm{d}p_{j}}{2\pi} \exp[\mathrm{i}p_{j}(q_{j+1} - q_{j})\hbar^{-1}] (1 - \mathrm{i}\varepsilon\hbar^{-1}H(q_{j}, p_{j})). \quad (2.14)$$

Still working to first non-trivial order in ε , we write the integrand in (2.14) as an

exponential

$$\langle q_{j+1}, t_{j+1} | q_j, t_j \rangle \approx \hbar^{-1} \int \frac{\mathrm{d}p_j}{2\pi} \exp\{i\hbar^{-1} \varepsilon [p_j(q_{j+1} - q_j)\varepsilon^{-1} - H(q_j, p_j)]\}.$$
 (2.15)

Returning to (2.7), the transition amplitude may now be expressed in the form $\langle q'', t''|q', t' \rangle$

$$\approx \prod_{j=1}^{N} \int dq_{j} \prod_{j=0}^{N} \frac{dp_{j}}{2\pi\hbar} \exp\left(i\hbar^{-1}\varepsilon \sum_{j=0}^{N} \left[p_{j}(q_{j+1}-q_{j})\varepsilon^{-1} - H(q_{j},p_{j})\right]\right) \tag{2.16}$$

where we have written

$$q_0 = q'$$
 $q_{N+1} = q''$ (2.17)

Taking the limit $N \to \infty$ with $(N+1)\varepsilon$ fixed as in (2.6), we obtain the transition amplitude as a path integral

$$\langle q'', t''|q', t'\rangle \propto \int \mathcal{D}q \int \mathcal{D}p \exp i\hbar^{-1} \int_{t}^{t'} dt (p\dot{q} - H(p, q))$$
 (2.18)

where the integration is over all functions p(t), and over all functions q(t) which obey the boundary conditions and animalimate and setoned (a.q.18 disease

le anodibnos varbauod
$$q(t') = q'^{\text{odo}} \left(1 \right) q(t'') = q''$$
. Il svo bia (12 ano (2.19)) we state buota state that the ground-state

The result is more general than the case to which we have restricted ourselves theory. With that application in mind, we now de in (2.8).

When the Hamiltonian is given by (2.8), the p_i integrations in (2.15) and (2.16) may be carried out (formally). We complete the square by making the change of variables the completeness of the eigenstates a . . .) and le

$$\tilde{p}_j = p_j - m\varepsilon^{-1}(q_{j+1} - q_j) \tag{2.20}$$

and perform the integrations formally by pretending that is is real (continuation to imaginary time). We then have Gaussian integrals and obtain

$$\langle q_{j+1}, t_{j+1} | q_j, t_j \rangle$$
 satisfies a various of sold of the latter $1 < 1 < 1 < 1 < 1 < 1$ behaving $\approx (2\pi i \epsilon \hbar/m)^{-1/2} \exp\{i\hbar^{-1} \epsilon [\frac{1}{2}m\epsilon^{-2}(q_{j+1} - q_j)^2 - V(q_j)]\}.$ (2.21)

Using (2.21) in (2.7) gives vew trabaged amil gailing correspond to the use of the corresponding time dependent way saving the corresponding time.

$$\langle q'', t''|q', t' \rangle_{\mathcal{A}_{j}} \approx (2\pi i \varepsilon \hbar/m)^{-(N+1)/2} \prod_{j=1}^{N} \int dq_{j} \exp\left(i\hbar^{-1}\varepsilon \sum_{j=0}^{N} \left[\frac{1}{2}m\varepsilon^{-2}(q_{j+1}-q_{j})^{2} - V(q_{j})\right]\right). \tag{2.22}$$

 $\psi_n(q,t) = \langle q,t|n \rangle = e^{-iE_nt\hbar} \langle q|n \rangle$

Taking the limit $N \to \infty$ with $(N+1)\varepsilon$ fixed as in (2.6) yields the path integral