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PREFACE

In the course of the 1970s important developments in the substance and form
of particle physics have gradually rendered the excellent field theory texts of
the 1950s and 1960s inadequate to the needs of postgraduate students. The
main development in the substance of particle physics has been the emergence
of gauge field theory as the basic framework for theories of the weak,
electromagnetic and strong interactions. The main development on the formal
side has been the increasing use of path (or functional) int=gral methods in the
manipulation of quantum field theory, and the emphasis on the generating
functionals for Green functions as basic objects in the theory. This latter
development has gone hand-in-hand with the former because the comparative
complexity and subtlety of non-Abelian gauge field theory has put efficient
methods of proof and calculation at a premium.

It has been our objective in this book to introduce gauge field theory to the
postgraduate student of theoretical particle physics entirely from a path.
integral standpoint without any reliance on the more traditional method of
canonical quantisation. We have assumed that the reader already has a
knowledge of relativistic quantum mechanics, but we have not assunied any
prior knowledge of quantum field theory. We believe that it is possible for the
postgraduate student to make his first encounter with scalar field theory in the
path integral formalism, and to proceed from there to gauge field theory. No
attempt at mathematical rigour has been made, though we have found it
appropriate to indicate how well-defined path integrals may be obtained byan
analytic continuation to Euclidean space. .

We have chosen for the contents of this book those topics which we believe
form a foundation for a knowledge of modern relativistic quantum field
theory. Some topics inevitably had to be included, such as the path integral
approach to scalar field theory, path integrals over Grassmann variables
necessary for fermion field theories, the Faddeev—Popov quantisation
procedure for non-Abelian gauge field theory, spontaneous breaking of
symmetry in gauge theories, and the renormalisation group equation and
asymptotic freedom. At a more concrete level this enables us to discuss
quantum chromodynamics (¢cp) and electroweak theory. Some topics have
been included as foundation material which might not have appeared if the
book had been written at a slightly earlier Jate. For example, we have inserted
a chapter on field theory at non-zero temperature, in view of the large body of
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literature that now exists on the apphcation of gauge field -theory to
cosmology. We have also included a chapter on grand vaified theory. Some
topics we have omitted from this introductory text, such as an extensive
discussion of the results of perturbative 2co (though some applications have
been discussed 1n the text), non-perturbative ocp, and supersymmetry.

We owe much to Professor R G Moorhouse who suggestzad that we should
write this book, and to many colleagues, including P Frampten, A Sirlin, J
Cole, T Muta, H F Jones, D R T Jones, D Lancaster, J Fleischer, Z Hioki and
G Barton, for the physics they have taught us. We are very grateful to Mrs S
Pearson and Ms A Clark for itheir very careful and speedy typing of the
manuscript. Finally, we are greatly indebted to our wives, to whom this book
. isdedicated, for their invaluable encouragement throughout the writing of this

book. :

David Bailin
Alexander Love
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PATH INTEGRALS

There are two widely used approaches to quantum field theory. The first is
based on field operators and the canonical quantisation of these operator
fields, and will not be discussed in this book. The second approach, as we shall
see in Chapter 4, involves path integrals' over classical fields, and it is upon
this latter approach that this book relies for its derivations. In this chapter, the
idea of path integrals (or functional integrals) will be developed in a very
intuitive way without any attempt at mathematical precision or rigour.
Instead, the analogy between vectors and functions, and between matrices and
differential operators on functions will be exploited extensively. Since very few
path integrals can be performed exactly, we shall concentrate on Gaussian
path integrals®. These are important in their own right, but much more so
because they can be used in approximation schemes when the exact path
integral is intractable, as we shall see in later chapters.

Our starting point is the ordinary Gaussian integral
J dy exp( —4ay®)=(2n)'/2a " 1/? a>0. (1.1)

e+ ]

This may be generalised to the integral over » real variables
J dy, ...dy, exp(—3YTAY)=(2n)"(det A) 112 (12)

where A is a real symmetric positive definite matrix, ¥ is the column vector
with components (y, ..., y,), the transpose of ¥ is denoted by ¥', and each
ntegral is understood to be over the range (— o¢, «). Equation (1.2) is easily
derived by diagonalising A, when the n-dimensional integration becomes a
product of n integrals of the form (1.1). It will prove convenient to write

det A=expindet A=exp Trin A (1.3)

where Tr denotes the trace of the matrix. The identity |
Indet A=Trin A (1.4)
- is most easily proved by diagonalising A. Equation (1.2) can now be written as

(2m) "2 f dy,...dy,exp(—3Y'AY)=exp(—L Trin A). (1.5)

- ]

We wish to generalise (1.5) to the case where the integration is over the
continuous infinity of components of a function ¢(x) rather than over the finite
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number of components o0i t.» “ojumi- » -ctor Y. Such an integral is called a
path (or functional) integral. P\_zeding intuitively? we write

I@(p cxp( -1 jdx’ fdxtp(x’)A(x', x)(p(x)) =exp(—3Trin A) (1.6)

where we use the symbol 2 for path integration, and we assume that the
integral has been defined in such a way as to remove any normalisation factor
_ (corresponding to the factor (2) ™2 in (1.5)). The integrals over x’ and x are
- assumed to be one-dimensional integrals over the range (— o, ). However,
the treatment generalises trivially to the case where dx is replaced by d*x, and
the integration is over the whole four-dimensional space. The trace in (1.6) may
be evaluated by Fourier transforming. For example, consider the case

d
A(x’,x)=(£? 5;+r) H(x' —x) (L.7)

where ris a constant. (This is closely related to situations we shall encounter in
later chapters.) The one-dimensional Dirac delta function has the integral
representation

® dp . .,
5(x' —x) = f P givtx =), (18)
w 2m ,
Thus
’ = dp ip(x’ — 2
Alx!; x)= — P =X (p2 4 (1.9)
e 2T
and
dp 2
Trin A= |dx Z—In(p +7) (1.10)
n

where to take the trace we have set x’= x and integrated over all values of x,
since we have a continuous infinity of degrees of freedom.
A slight generalisation can be made by introducing a linear term in (1.5).

o]
(21t)_"/2f dy,...dy, exp(—=1YTAY+p"Y)
-

=exp(—4Trin A)exp3p'A " 'p) (1.11)

where pisa given column vector,and A ™! exists because A is positive#=nita,
Equation (1.11} is derived from (1.5) by completing the square,

YAY-2p"Y=(Y-A"1p)A(Y-A"1p—p'A 'p (1.12)
and making the change of variable
Y=Y-A"1p (1.13)
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The corresponding path integral is

~

J D¢ exp( -1 jdx’ J'dxrp(x')A(x', x)o(x)+ dep(x)(p(x))

=exp(—4 Trin A) exp(% fdx’ fdxp(x’)A i, x)p(x)). (1.14)

where p(x) is a given function. In (1.14), A~ !(x’, x) is easily evaluated from the
Fourier transform of A(x', x). Thus, with A(x", x) asin (1.7), we have from (1.9),

A—I(X’,x)zj' g_f:cip(x'—x)(pz_*_r)—l. (115)

Equations (1.11) and (1.14) enable us to carry out somewhat more general
integrals than Gaussian integrals. ' If .we differentiate with respect to
Pmy> Pmys -+ s Pm, At p=01in (1.11) we obtain

(2m) 2 Jm dy; ...y, Ym, - - Ym, €XP —-4Y'AY)

=exp(—4Trin A)(4, .. ... 4, " . +permutations)  (1.16)

when p is even, and zero when p is odd.
Generalised to the path integral case

f@(p P(xy)... @(x,) exp( —4 fdx’ fdx P(x)A(x', x)go(x))

=exp(—4 Trln A{A™ (x4, x;) ... A7'(x,-4, x,) + permutations). (1.17)

To carry through the differentiations in the path integral case we understand
the derivatives to be functional derivatives 6/dp(x,), ..., 8/dp(x,), where by
definition

(J'dx p(x)(p(x)) =o(x;) i=1,...,p (1.18)
op(x;)

We have been discussing a real column vector or a real function ¢(x). The
discussion is. easily extended to the case of complex column vectors or
functions. Thus, for example,

(2m)~" J‘d:1 dz¥...dz,dz* exp(— Z'AZ) =(det A) " '=exp(—Trin A) (1.19)

where A is 2 Hermitian matrix, Z is the complex column vector with
components (z,,...,2,), Z'=(Z*", and

fdz dz*=2 fd(Re z) d(Im z). (1.20)
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The corresponding path integral is
J-Jtp./)(p exp( J.dx’ J dx o*(x")A(x', x)rp(x)) =exp( —Trln A). ('i 21)

So far we have been assuming that the reader is making the intuitive leap
from a column vector with a finite number of components to a function with a
continuous infinity of components. We can put path integrals on a (slightly)
more formal basis, as follows’. Suppose that the x and x' integrations in (1.6)

~are over the finite range from X to X. We can take the limit of an infinite range
of integration at the end of our discussion. Divide the range up into N + 1
equal segments of length ¢

S (N+ l)s-X X. ' (1.22)
Let the steps begm at kp=2X, X1, X250 x., and adopt the notations ,
'. =o(x;) Ap=Alx;, Xy)- (1.23)

Then we may define the Gaussian path integral as follows:

f Do exp( —4 f dx’ jdx o(x) AKX, x) qo(x))

= lim (2r)" ””H do; exp(‘—%Zk%AMPu)

Nox I
= lim (2n)~ w2 ﬂ do,; exp(—Lo"Agp) (1.24)

N-x i=1

where ¢ is the column vector with components (¢,,...,@y), and A is the
matrix with entries A,. In the case where we allow the range of integration
(X, X) to become .the interval (— oo, ov), we may perform the Gaussian
integral to obtain the resuit of equation (1.6). We must, of course, interpret
limy_.; exp(—4% TrIn A), where A is the matrix, as exp(—4 Tr In A), where A is
Alx', x).

Problem

1.1 Derive (1.19) from (1.5).

References

I Feynman R P and Hibbs A R 1965 Quantum -Mechanics and Path Integrals (New
York: McGraw-Hill) ;

2 We follow most closely the approach of
Coleman S 1973 Lectures given at the 1973 International Summer School of Physics,
Ettore Majorana.



PATH INTEGRALS IN NON-RELATIVISTIC
QUANTUM MECHANICS

2.1 Transition amplitudes as path integrals

It was shown by Feynman (following a lead by Dirac) that quantum mechanics
could be formulated in terms of path integrals'?. We shall discuss this
approach to quantum mechanics in some detail since it provides the key to the
path imegrﬁormulation of quantum field theory. For simplicity, we shall
consider in the first instance a system described by a single generalised
coordinate Q, with a conjugate momentum P. When corresponding quantum
mechanical operators for Q are required we shall use the notation Oy in the
Heisenberg picture, and Qg in the Schddinger picture. We denote the
eigenstates of Qg by |¢)s. ~

Osla>s=dla)s. 2.1)
Since QH is time-dependent, so are its eigenstates, which we denote by |g,1):
Qullg. 1> =qlg.1). : (22)

(It should, of course, be remembered that the physical state vectors, as opposed
to the eigenstates of Qy(t), are time-independent in the Heisenberg picture.)
The relevant connections between the two pictures are

Q‘H(t);ciﬁrlh Q"S e—ifh/h (2.3)
and
la. 1y =€""g)s (24)

where H is the (time-independent) Hamiltonian operator.
The probabihty amplitude that a system which was in the eigenstate g, L) it
at time t' will be found to have the v:flue q" of 0 at time t” is g

-« e t>—s.4 Ie“”“'“""'"’>
3 18

-f,'

Let the steps begm at ity ilay. . .» N;‘:'
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set for any given value of . Thus
N
g gt )= I1 jd‘11<q"st"|4~’ ) {ns tuldn - 10t =1 )
j=1

Lt e S 2.7

We need to study <g;..t;+,|g,t;> as N becomes very large and the step
length ¢ becomes very small. The discussion is much snmphfed if the
Hamiltonian is of the form

2

P
HQ, P)=—+ V(Q). 2.8
©Q,P) o T V) (2.8)
(Simplification results because pfoducts of P with Q are not involved, and
problems of order associated with the lack of commutativity of the
corresponding operators are alleviated.) Applying equation (2.5) to first non-
trivial order in &,

iHe
<qj+htj+1{qjvtj>z <qj+1 "‘qu> . (2.9)
s | s .
But
- h? o2
s<q1+1lH|‘1j>s=(“—2'; @)s(‘hnl‘b)s (2.10)

and using the usual integral representation of the Dirac J function

oo

: d ¢ &
s(‘ljﬂlq;)s:é(qj'n_‘Ij)=h_lf E%EXP[IPJ(Qj+l—‘Ij)h 1 (2.11)

= ®

where we have chosen to write the integration variable as p;/h. Using (2.11)in
(2.10) gives

2 _, [dp; (h*p? ) ~
g+ 1|Hlgps=h"" f;;’ (ij + V(QJ)) explipjg;+y—a;)h "]

(2.12)

LS

&, (dp

=h & EXP[ipﬂ‘L’H —‘Ij)h_l]H(‘Iijj)- (2.13)

We may now rewrite (2.9) as
$j+1sty+1]apt)
dp; . _ il
“Jé%exp[xpj{qj“—qj)h J(1—ieh~'Hig;. p)). (2.14)

* Still working to first non-trivial g)rder in g, we write the integrand in (2.14) as an
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exponential
(s 1o tpealds ty) <h! J‘%’:T’ew{ih‘ ‘e[p;(g;+1—a;)e” " —H(g;,p))]}. (2.15)
Returning to (2.7), the transition amplitude may now be expressed in the form
g\ Ulg > '
~ n '[dq; Xp( ih™le Z [Pig;+1—q)e™" H(q,,p,)]) (2.16)

where we have written
do=9q +r1=9" (2.17)

Taking the limit N —» o with (N + 1 fixed asin (2.6), we obtain the transition
amplitude as a path integral

{q".U'|q', 1) oc

2q J.-@p expih~! f de(pg—H(p,q)) (2.18)
4

where the integration is over all functions p(t), and over all functions g(t) which
obey the boundary conditions

q(t)y=q"  q(t")=4q". L (2.19)

The resuit is more general than the case to which we have restricted ourselves
in (2.8).

When the Hamiltonian is given by (2.8), the p; integrations in (2 15) and
(2.16) may be carried out (formally). We complete the square by making the
change of variables

Pi=p;—me” (g4, —4q;) , (2.20)

and perform the integrations formally by pretending that ie is real
(continuation to imaginary time). We then have Gaussian integrals and obtain

{Gj+1s tj+1|qj’ t;>
~(2migh/m)~*'? exp{ih~'e[dme ™ *(q;., , —q;,)> — Vig))]}. (221
Using (2.21) in (2.7) gives
<qn’ tnlql, t‘z :
N N
~ (2nigh/m)~"* "2, T] JMJ cxp(ih"‘s b [dme™%g;., —gq;)* — V(qj)]).
j=1 i=0

(2.22)

Taking the limit N — > with (N + 1)¢ fixed as in (2.6) yields the path integral



