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Preface

The p-Laplacian operator
Apu = div (\Vu|p—2 Vu), pe(1,0)

arises in non-Newtonian fluid flows, turbulent filtration in porous media,
plasticity theory, rheology, glaciology, and in many other application areas;
see, e.g., Esteban and Véazquez [48] and Padial, Takag, and Tello [90]. Prob-
lems involving the p-Laplacian have been studied extensively in the literature
during the last fifty years. However, only a few papers have used Morse the-
oretic methods to study such problems; see, e.g., Vannella [130], Cingolani
and Vannella [29, 31], Dancer and Perera [40], Liu and Su [74], Jiu and
Su [58], Perera [98, 99, 100], Bartsch and Liu [15], Jiang [57], Liu and Li
[75], Ayoujil and El Amrouss [10, 11, 12], Cingolani and Degiovanni [30],
Guo and Liu [55], Liu and Liu [73], Degiovanni and Lancelotti [43, 44], Liu
and Geng [70], Tanaka [129], and Fang and Liu [50]. The purpose of this
monograph is to fill this gap in the literature by presenting a Morse theo-
retic study of a very general class of homogeneous operators that includes
the p-Laplacian as a special case.

Infinite dimensional Morse theory has been used extensively in the lit-
erature to study semilinear problems (see, e.g., Chang [28] or Mawhin and
Willem [81]). In this theory the behavior of a C!-functional defined on
a Banach space near one of its isolated critical points is described by its
critical groups, and there are standard tools for computing these groups
for the variational functional associated with a semilinear problem. They
include the Morse and splitting lemmas, the shifting theorem, and various
linking and local linking theorems based on eigenspaces that give critical
points with nontrivial critical groups. Unfortunately, none of them apply to
quasilinear problems where the Euler functional is no longer defined on a
Hilbert space or is C? and there are no eigenspaces to work with. We will
systematically develop alternative tools, such as nonlinear linking and local
linking theories, in order to effectively apply Morse theory to such problems.

A complete description of the spectrum of a quasilinear operator such as
the p-Laplacian is in general not available. Unbounded sequences of eigen-
values can be constructed using various minimax schemes, but it is generally
not known whether they give a full list, and it is often unclear whether dif-
ferent schemes give the same eigenvalues. The standard eigenvalue sequence
based on the Krasnoselskii genus is not useful for obtaining nontrivial critical
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viii PREFACE

groups or for constructing linking sets or local linkings. We will work with
a new sequence of eigenvalues introduced by the first author in [98] that
uses the Zs-cohomological index of Fadell and Rabinowitz. The necessary
background material on algebraic topology and the cohomological index will
be given in order to make the text as self-contained as possible.

One of the main points that we would like to make here is that, contrary
to the prevailing sentiment in the literature, the lack of a complete list of
eigenvalues is not a serious obstacle to effectively applying critical point the-
ory. Indeed, our sequence of eigenvalues is sufficient to adapt many of the
standard variational methods for solving semilinear problems to the quasi-
linear case. In particular, we will obtain nontrivial critical groups and use
the stability and piercing properties of the cohomological index to construct
new linking sets that are readily applicable to quasilinear problems. Of
course, such constructions cannot be based on linear subspaces since we no
longer have eigenspaces. We will instead use nonlinear splittings based on
certain sub- and superlevel sets whose cohomological indices can be precisely
calculated. We will also introduce a new notion of local linking based on
these splittings.

We will describe the general setting and give some examples in Chap-
ter 1, but first we give an overview of the theory developed here and a
preliminary survey chapter on Morse theoretic methods used in variational
problems in order to set up the history and context.



An Overview

Let ® be a C''-functional defined on a real Banach space W and satisfying
the (PS) condition. In Morse theory the local behavior of ® near an isolated
critical point w is described by the sequence of critical groups

(1) CU®,u) = H(® nU, @ n U\ {u}), ¢=0

where ¢ = ®(u) is the corresponding critical value, ®¢ is the sublevel set
{fue W :®(u) <c}, U is a neighborhood of u containing no other critical
points, and H denotes cohomology. They are independent of U by the
excision property. When the critical values are bounded from below, the
global behavior of ® can be described by the critical groups at infinity

CU(D,00) = HI(W,d%), ¢q>0

where a is less than all critical values. They are independent of a by the sec-
ond deformation lemma and the homotopy invariance of cohomology groups.
When & has only a finite number of critical points wuq,...,u, their
critical groups are related to those at infinity by
k
Z rank C4(®, u;) = rank CY(®,00) Vg
i=1
(see Proposition 3.16). Thus, if C9(®,00) # 0, then ® has a critical point u
with C9(®,u) # 0. If zero is the only critical point of ® and ®(0) = 0, then
taking U = W in (1), and noting that ®° is a deformation retract of W and
@0\ {0} deformation retracts to ®* by the second deformation lemma, gives

C(®,0) = HI(®°,9°\ {0}) ~ HI (W, ®°\ {0})
~ HI(W,®%) = CY(®,0) VYq.

Thus, if C4(®,0) 4 C9(®P, o) for some ¢, then ® has a critical point u # 0.
Such ideas have been used extensively in the literature to obtain multiple
nontrivial solutions of semilinear elliptic boundary value problems (see, e.g.,
Mawhin and Willem [81], Chang [28], Bartsch and Li [14], and their refer-
ences).

Now consider the eigenvalue problem

—Apu=Auff?u inQ

u=20 on 0f)
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where  is a bounded domain in R"?, n > 1,
Apu = div (|VulP~2 Vu)

is the p-Laplacian of u, and p € (1,0). The eigenfunctions coincide with the
critical points of the C'-functional

Ba() = | [Vl = AfuP

defined on the Sobolev space WO1 'P(Q) with the usual norm

pt = ([ |Vu|f’)’l’ .

When A\ is not an eigenvalue, zero is the only critical point of ®, and we
may take

U={ueWy"(Q):|ul <1}
in the definition (1). Since ®, is positive homogeneous, ® N U radially
contracts to the origin and ® n U\ {0} radially deformation retracts onto

NS =0
where S is the unit sphere in WO1 'P(Q) and

)

6q0 g, lIJ/\ = Q

T(u) = ——, ues.
|ul?

It follows that

(2) Cl(®y,0) ~{ _
HI (), o =«

where § is the Kronecker delta, G is the coefficient group, and H denotes
reduced cohomology. Note also that the eigenvalues coincide with the critical
values of ¥ by the Lagrange multiplier rule.

In the semilinear case p = 2, the spectrum o(—A) consists of isolated
eigenvalues A, repeated according to their multiplicities, satisfying

O< A<+ — 0.
If A < A\; = inf U, then ¥* = & and hence

(3) Ci(®x,0) ~ 6g0 G

by (2). If Ax < A < Ag41, then we have the orthogonal decomposition

(4) H(Q)=H @H', u=v+w

where H ™ is the direct sum of the eigenspaces corresponding to Ap, ..., Ak

and H' is its orthogonal complement, and
dimH™ =k
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is called the Morse index of zero. It is easy to check that

(s t) — “v+(1—t)w

et u )‘X
v+(1—t)w||’ (at)E‘I’ [071]

is a deformation retraction of ¥* onto H~ n S, so
CU(®y,0) ~ H Y (H™ n S) ~ 64 G

by (2).

The quasilinear case p # 2 is far more complicated. Very little is known
about the spectrum o(—A,) itself. The first eigenvalue A; is positive, simple,
and has an associated eigenfunction ¢; that is positive in 2 (see Anane [9]
and Lindqvist [68, 69]). Moreover, \; is isolated in the spectrum, so the
second eigenvalue Ao = inf o(—Ap)N (A1, 00) is also well-defined. In the ODE
case n = 1, where Q is an interval, the spectrum consists of a sequence of
simple eigenvalues Ar " o0, and the eigenfunction ¢y associated with A; has
exactly k — 1 interior zeroes (see, e.g., Drabek [46]). In the PDE case n > 2,
an increasing and unbounded sequence of eigenvalues can be constructed
using a standard minimax scheme involving the Krasnoselskii’s genus, but
it is not known whether this gives a complete list of the eigenvalues.

If A < A1, then (3) holds as before. It was shown in Dancer and Perera
[40] that

CU®,,0) ~ 61 G
if A1 < XA < A9 and that
Ci®,,0) =0, ¢=0,1

if A > Xo. Thus, the question arises as to whether there is a nontrivial
critical group when A > Ag. An affirmative answer was given in Perera
[98] where a new sequence of eigenvalues was constructed using a minimax
scheme involving the Zs-cohomological index of Fadell and Rabinowitz [49]
as follows.

Let F denote the class of symmetric subsets of S, let ¢(M) denote the
cohomological index of M € F, and set

Ak = t(]\;/{[r%f];k SEAI/)[ U(u).
Then )\, / oo is a sequence of eigenvalues, and if Ay < A1, then
(5) W) = i(S\Wy,,,) = k
where
I = {ueS:WU(u) <M}, Unyy ={ueS:¥(u) >Ny}
(see Theorem 4.6). Thus, if Ay < A < Ag41, then
i(T) =k
by the monotonicity of the index, which implies that
H1(0) %0
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(see Proposition 2.14) and hence
(6) Ck(®,,0) # 0

by (2).

The structure provided by this new sequence of eigenvalues is sufficient
to adapt many of the standard variational methods for solving semilinear
problems to the quasilinear case. In particular, we will construct new linking
sets and local linkings that are readily applicable to quasilinear problems.
Of course, such constructions cannot be based on linear subspaces since we
no longer have eigenspaces to work with. They will instead use nonlinear
splittings generated by the sub- and superlevel sets of ¥ that appear in (5),
and the indices given there will play a key role in these new topological
constructions as we will see next.

Consider the boundary value problem

—Apu= f(z,u) in
(7)
u=20 on 05}

where the nonlinearity f is a Carathéodory function on €2 x R satisfying the
subcritical growth condition

fat)<C(t"+1) Y(zt)eQxR

for some r € (1,p*). Here
np

—, p<n
p*: n-—p

o,  p=n

is the critical exponent for the Sobolev imbedding WO1 Q) — LT(Q).
Weak solutions of this problem coincide with the critical points of the C'-
functional

D(u) = f |VulP — p F(x,u), ue W, ()
Q
where ,
F(xz,t) = j f(z,s)ds
0

is the primitive of f.
It is customary to roughly classify problem (7) according to the growth
of f as

(7) p-sublinear if

f(z,t)

im =0 VzeQ,
t—too [t[P—2¢
(i7) asymptotically p-linear if
0 < liminf 250 <) f@t) o vreq,

t—too [t[P=2t i [tPT2E
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(#ii) p-superlinear if

f(z,t)

im —-—~-=ow Vzell.
t—too [t|P2¢

Consider the asymptotically p-linear case where

flz,1)

im —~ = )\, uniformly in x €
t—too |tP2¢

with A\ < A < Ag41, and assume A\ ¢ o(—A,) to ensure that ® satisfies the
(PS) condition.
In the semilinear case p = 2, let

A={veH :|v| =R}, B=HT
with H* as in (4) and R > 0. Then
(8) max ®(A) < inf &(B)

if R is sufficiently large, and A cohomologically links B in dimension k — 1
in the sense that the homomorphism

H*Y(Hy()\B) — H*"'(A)

induced by the inclusion is nontrivial. So it follows that problem (7) has a
solution u with C*(®,u) # 0 (see Proposition 3.25).

We may ask whether this well-known argument can be modified to obtain
the same result in the quasilinear case p # 2 where we no longer have the
splitting given in (4). We will give an affirmative answer as follows. Let

A:{Ru:ue\ll)""}, BZ{tlL:uE‘I/,\k+1,t>0}

with R > 0. Then (8) still holds if R is sufficiently large, and A cohomolog-
ically links B in dimension £ — 1 by (5) and the following theorem proved
in Section 3.7, so problem (7) again has a solution u with C*(®,u) # 0.

THEOREM 1. Let Ay and By be disjoint nonempty closed symmetric
subsets of the unit sphere S in a Banach space such that

i(Ao) = i(S\Bo) = k
where i denotes the cohomological index, and let
A={Ru:u€A0}, B={tu:ueBo,t>O}
with R > 0. Then A cohomologically links B in dimension k — 1.
Now suppose f(z,0) = 0, so that problem (7) has the trivial solution
u(x) = 0. Assume that

(9)
Ak < A < Agy1, and the sign condition
(10) pF(x,t) = A1 |t|P V(x,t) e Q2 xR

f(z,t)

150 |2t

= A, uniformly in x € Q,
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holds. In the p-superlinear case it is customary to also assume the following
Ambrosetti-Rabinowitz type condition to ensure that ® satisfies the (PS)
condition:

(11) 0 < pF(z,t) <tf(z,t) Ve, |t| large

for some p > p.

In the semilinear case p = 2, we can then obtain a nontrivial solution
of problem (7) using the well-known saddle point theorem of Rabinowitz as
follows. Fix a wo € H™\ {0} and let

X={u=v+swy:ve H ,s>0, |u| <R},
A={veH :|v|<R}u{ueX:|u| =R},
B={weH":|uw|=r}
with H* as in (4) and R > r > 0. Then
(12) max ®(A) < 0 < inf ®(B)
if R is sufficiently large and r is sufficiently small, and A homotopically links
B with respect to X in the sense that
YX)nB#& Vyel
where
I ={yeC(X,Hy(Q)): V|4 =ida}
So it follows that
c:=inf sup @(u)
7€l uey(X)
is a positive critical level of ® (see Proposition 3.21).

Again we may ask whether linking sets that would enable us to use this
argument in the quasilinear case p # 2 can be constructed. In Perera and
Szulkin [105] the following such construction based on the piercing property
of the index (see Proposition 2.12) was given. Recall that the cone CAy
on a topological space Ag is the quotient space of Ay x [0, 1] obtained by
collapsing Ag x {1} to a point. We identify Ay x {0} with A itself. Fix an
h e C(CT**, S) such that h(C'T**) is closed and h|ga, = id ya,, and let

Xz{tu:ueh(C\I/)"‘),OgtSR},
Az{tu:ue\PAk,OétsR}u{ueX:Hu||=R},
Bz{ru:ue\I!AkH}

with R > r > 0. Then (12) still holds if R is sufficiently large and r is
sufficiently small, and A homotopically links B with respect to X by (5)
and the following theorem proved in Section 3.6, so ® again has a positive
critical level.
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THEOREM 2. Let Ay and By be disjoint nonempty closed symmetric
subsets of the unit sphere S in a Banach space such that

i(Ag) = i(S\By) < o,
h e C(CAy,S) be such that h(CAp) is closed and h|, = id 4,, and let
X = {tu:ueh(CAO),OStSR},
A={tu:ue Ay, 0<t<R}uU{ueX:|u| =R},

B = {'r'u Tu € BO}
with R > r > 0. Then A homotopically links B with respect to X.

The sign condition (10) can be removed by using a comparison of the
critical groups of ® at zero and infinity instead of the above linking ar-
gument. First consider the nonresonant case where (9) holds with A €
(Mg, Ak+1)\o(—Ap). Then

Ci(®,0) ~ CI(®,,0) Vg
by the homotopy invariance of the critical groups and hence
(13) C*(®,0) # 0

by (6). On the other hand, a simple modification of an argument due to
Wang [132] shows that

ClY®,0) =0 Vq
when (11) holds (see Example 5.14). So ® has a nontrivial critical point by
the remarks at the beginning of the chapter.

In the p-sublinear case, where ® is bounded from below, we can use
(13) to obtain multiple nontrivial solutions of problem (7). Indeed, the
three critical points theorem (see Corollary 3.32) gives two nontrivial critical
points of ® when k > 2.

Note that we do not assume that there are no other eigenvalues in the
interval (Mg, Ak+1), in particular, A may be an eigenvalue. Our results hold
as long as Ay < A < Ag41, even if the entire interval [Ag, Ax+1] is contained in
the spectrum. Thus, eigenvalues that do not belong to the sequence (A) are
not that important in this context. In fact, we will see that the cohomological
index of sublevel sets changes only when crossing an eigenvalue from this
particular sequence.

Now we consider the resonant case where (9) holds with A € [Ag, Ag+1] N
o(—Ap), and ask whether we still have (13). We will show that this is indeed
the case when a suitable sign condition holds near ¢t = 0. Write f as

flz,t) = APt + g(a, t),
so that

. g(z,t)

im = 0, uniformly in x € Q,
t—0 |t[P—2¢
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set ;
G(zx,t) = f g(z,s)ds,
and assume that either ’
A= Ak, G(z,t) >0 VzeQ, |t| small,
or
A= Ag+1, G(z,t) <0 VzeQ, |t| small
In the semilinear case p = 2, let
A={veH :|v| <r}, B={weH":|w|<r}

with H* as in (4) and 7 > 0. Then
(14) P[4 <0< Plp\

if r is sufficiently small (see Li and Willem [67]), so ® has a local linking
near zero in dimension k& and hence (13) holds (see Liu [71]).

So we may ask whether the notion of a local linking can be generalized to
apply in the quasilinear case p # 2 as well. We will again give an affirmative
answer. Let

Az{guzue\ll’\‘“,ogtér}, Bz{tu:ue\ll)\kﬂ,()étsr}

with 7 > 0. Then (14) still holds if r is sufficiently small (see Degiovanni,
Lancelotti, and Perera [42]), so ® has a cohomological local splitting near
zero in dimension k in the sense of the following definition given in Section
3.11. Hence (13) holds again (see Proposition 3.34).

DEFINITION 3. We say that a C''-functional ® defined on a Banach space
W has a cohomological local splitting near zero in dimension k if there is an
r > 0 such that zero is the only critical point of ® in

U = {u eW :|u| < }
and there are disjoint nonempty closed symmetric subsets Ay and By of oU
such that
i(Aog) = i(S\Bo) = k
and
D4 <0< @
where
Az{tu:uer,OStél}, Bz{tu:ueBo,OStgl}.

These constructions, which were based on the existence of a sequence of
eigenvalues satisfying (5), can be extended to situations involving indefinite
eigenvalue problems such as

~Apu=AV(z)|uP2u inQ

u=20 on 0N
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where the weight function V € L®(£2) changes sign. Here the eigenfunctions
are the critical points of the functional

D) (u) = J |[VulP — AV (zx) |ulP, wue Wg‘p(Q)
Q
and the positive and negative eigenvalues are the critical values of

1
‘Ili(u) = m, 'u.eSlL.

respectively, where

and
= {u eS:J(u 0}
Let 7% denote the class of symmetric subsets of ST, respectively, and
set
M= inf  sup Ut (u),

MeF*t weM
i(M)=k

AL = 8 inf U™ (u).
k Mg)— ueht S
i(M)=k

We will show that )\Z_’ /" +o0 and A7 N, —o0 are sequences of positive and
negative eigenvalues, respectively, and if A} < A" 41 (resp. A\, < A.), then

i((EF) = i(ST\(WT), ) =k
(resp. i((¥7),-) = i(STN(E ) M) = k).
In particular, if )\+ <A< ’\k+1 or Ay <A< AL, then

C* (@5, 0) # 0.

Finally we will present an extension of our theory to anisotropic
p-Laplacian systems of the form

oF
—Ap,u; = %(x,u) in
(15) i i=1,....,m
u; =0 on 02,

where each p; € (1,2), u = (uy,...,un), and F € C'(£2 x R™) satisfies the
subcritical growth conditions

‘—(xu Z]u |9~ 14~1> V(z,u) e QxR™ 1=1,...,m
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for some r;; € (1,1 + (1 — 1/p}) pj). Weak solutions of this system are the
critical points of the functional

Q(u) = I(u) —fQF(m,u), ueW = Wol’pl(Q) X oo X Wol’pm(Q)

where

J |Vu;|Pi.
e lp’

Unlike in the scalar case, here I is not homogeneous except when p; =
= pm. However, it still has the following weaker property. Define a
continuous flow on W by
RxW oW, (au)—uq:=a/"" Tauy,...,|a/"?" " auy).
Then
I(ug) = |la|I(u) VaeR,ueW.

This suggests that the appropriate class of eigenvalue problems to study
here are of the form

—Aptt; = A gJ (z,u) in Q .
(16) it=1,...,m
u; =0 on 052,
where J € C1(2 x R™) satisfies
(17) J(z,uq) = o] J(z,u) VaeR, (z,u) e Q x R™.
For example,
J(z,u) = V(@) fur[™ - fum|™

where r; € (1,p;) with r1/p1 + -+ + rm/pm = 1 and V € L*®(Q2). Note that
(17) implies that if u is an eigenvector associated with A, then so is u, for
any a # 0.

The eigenfunctions of problem (16) are the critical points of the func-
tional

Oy(u) =I(u) —AJ(u), ueW
where
I = | Iew.
Let
M={ueW:I(u) =1}
and suppose that
M*E ={ueM:J(u) 20} # 3.

Then M < W\ {0} is a bounded complete symmetric C'-Finsler manifold
radially homeomorphic to the unit sphere in W, M are symmetric open
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submanifolds of M, and the positive and negative eigenvalues are given by
the critical values of

1
Ut (u) = —, *,
(u) T(w) ue M
respectively.

Let F* denote the class of symmetric subsets of M, respectively, and
set

Af = inf  sup ¥*(u),
MeF+ ueM
i(M)=k

Ap = sup ulélAf/[ U (u).

i(M)=k

We will again show that /\,': /" +oo and A\ —o0 are sequences of positive
and negative eigenvalues, respectively, and if )\;: < /\,L1 (resp. M1 < Ap)s
then

i((TF) = iMPNE) ) =k
(resp. i((¥7),.) = i(M\(¥~P*n) = k),
in particular, if A <X < A}, or A\, < X < Ap, then

C*(®y,0) # 0.

This will allow us to extend our existence and multiplicity theory for a single
equation to systems.

For example, suppose F'(z,0) = 0, so that the system (15) has the trivial
solution u(z) = 0. Assume that

F(z,u) = AJ(z,u) + G(z,u)

where A is not an eigenvalue of (16) and
Gz, u)| <C Y. |uil™ V(z,u)eQxR™
i=1

for some s; € (p;, p}). Further assume the following superlinearity condition:

L1 1 oF
there are u; > p;, ¢ = 1,...,m such that Z <— — —) u; — is bounded
S\pi pi) o Ou
from below and
m
0< F(z,u) < — —(z,u) Vz e Q, |u| large.
(@) < 3 2 St ju] larg

We will obtain a nontrivial solution of (15) under these assumptions in
Sections 10.2 and 10.3.
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All this machinery can be adapted to many other p-Laplacian like oper-
ators as well. Therefore we will develop our theory in an abstract operator
setting that includes many of them as special cases.



