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Preface

A system is said to have a delay when the rate of variation in the system
state depends on past states. Such a system is called a time-delay system.
Delays appear frequently in real-world engineering systems. They are often a
source of instability and poor performance, and greatly increase the difficulty
of stability analysis and control design. So, many researchers in the field of
control theory and engineering study the robust control of time-delay systems.
The study of such systems has been very active for the last 20 years; and new
developments, such as fixed model transformations based on the Newton-
Leibnitz formula and parameterized model transformations, are continually
appearing. Although these methods are a great improvement over previous
ones, they still have their limitations.

We recently devised a method called the free-weighting-matrix (FWM)
approach for the stability analysis and control synthesis of various classes
of time-delay systems; and we obtained a series of not so conservative delay-
dependent stability criteria and controller design methods. This book is based
primarily on our recent research. It focuses on the stability analysis and ro-
bust control of various time-delay systems, and includes such topics as sta-
bility analysis, stabilization, control design, and filtering. The main method
employed is the FWM approach. The effectiveness of this method and its
advantages over other existing ones are proven theoretically and illustrated
by means of various examples. The book will give readers an overview of the
latest advances in this active research area and equip them with a state-of-
the-art method for studying time-delay systems.

This book is a useful reference for control theorists and mathematicians
working with time-delay systems, engineering designing controllers for plants
or systems with delays, and for graduate students interested in robust control
theory and/or its application to time-delay systems.

We are grateful for the support of the National Natural Science Founda-
tion of China (60574014), the National Science Fund for Distinguished Young
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Abbreviations

inf infimum
lim limit

max maximum
min minimum
sup supremum

BRL bounded real lemma

CCL cone complementarity linearization
DOF dynamic output feedback

FWM  free weighting matrix

ICCL improved cone complementarity linearization
IFWM  improved free weighting matrix

LFT linear fractional transaction

LMI linear matrix inequality

MADB maximum allowable delay bound

MATI maximum allowable transfer interval
NCS networked control system

NFDE neutral functional differential equation
NLMI  nonlinear matrix inequality

RFDE retarded functional differential equation
SOF static output feedback
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R, RTL7 Rnxm

C, Cr, Crxm

diag {A4:, ---,An}
XY

A>0(<0)
A20(<0)
det(A)
Tr{A}

A(A)
Amax(A)
Amin (A)

set of real numbers, set of n-dimensional real vec-
tors, and set of n X m real matrices

set of complex numbers, set of n component com-
plex vectors, and set of n X m complex matrices

set of non-negative real numbers
set of non-negative integers

real part of s € C

transpose of matrix A
inverse of matrix A
shorthand for (A~1)T

n X n identity matrix (the subscript is omitted if

no confusion will occur)
diagonal matrix with A; as its ith diagonal element
symmetric matrix e F

YT Z
symmetric positive (negative) definite matrix
symmetric positive (negative) semi-definite matrix
determinant of matrix A
trace of matrix A
eigenvalue of matrix A
largest eigenvalue of matrix A

smallest eigenvalue of matrix A
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1. Introduction

In many physical and biological phenomena, the rate of variation in the sys-
tem state depends on past states. This characteristic is called a delay or a time
delay, and a system with a time delay is called a time-delay system. Time-
delay phenomena were first discovered in biological systems and were later
found in many engineering systems, such as mechanical transmissions, fluid
transmissions, metallurgical processes, and networked control systems. They
are often a source of instability and poor control performance. Time-delay
systems have attracted the attention of many researchers [1-3] because of
their importance and widespread occurrence. Basic theories describing such
systems were established in the 1950s and 1960s; they covered topics such
as the existence and uniqueness of solutions to dynamic equations, stability
theory for trivial solutions, etc. That work laid the foundation for the later
analysis and design of time-delay systems.

The robust control of time-delay systems has been a very active field for
the last 20 years and has spawned many branches, for example, stability
analysis, stabilization design, H,, control, passive and dissipative control,
reliable controlv, guaranteed-cost control, Hy, filtering, Kalman filtering, and
stochastic control. Regardless of the branch, stability is the foundation. So,
important developments in the field of time-delay systems that explore new
directions have generally been launched from a consideration of stability as
the starting point. This chapter reviews methods of studying the stability
of time-delay systems and points out their limitations, and then goes on to
describe a new method called the free-weighting-matrix (FWM) approach.

1.1 Review of Stability Analysis for Time-Delay Systems

Stability is a very basic issue in control theory and has been extensively dis-
cussed in many monographs [4-6]. Research on the stability of time-delay



2 1. Introduction

systems began in the 1950s, first using frequency-domain methods and later
also using time-domain methods. Frequency-domain methods determine the
stability of a system from the distribution of the roots of its characteris-
tic equation [7] or from the solutions of a complex Lyapunov matrix func-
tion equation [8]. They are suitable only for systems with constant delays.
The main time-domain methods are the Lyapunov-Krasovskii functional and
Razumikhin function methods [1]. They are the most common approaches
to the stability analysis of time-delay systems. Since it was very difficult to
construct Lyapunov-Krasovskii functionals and Lyapunov functions until the
1990s, the stability criteria obtained were generally in the form of existence
conditions; and it was impossible to derive a general solution. Then, Riccati
equations, linear matrix inequalities (LMIs) [9], and Matlab toolboxes came
into use; and the solutions they provided were used to construct Lyapunov-
Krasovskii functionals and Lyapunov functions. These time-domain methods
are now very important in the stability analysis of linear systems. This section
reviews methods of examining stability and their limitations.
Consider the following linear system with a delay:

(t) = Az(t) + Agz(t — h),
(1.1)

z(t) = ¢(t), te[-h, 0],

where z(t) € R™ is the state vector; h > 0 is a delay in the state of the system,
that is, it is a discrete delay; ¢(t) is the initial condition; and A € R™*™ and
Agq € R™™ are the system matrices. The future evolution of this system
depends not only on its present state, but also on its history. The main
methods of examining its stability can be classified into two types: frequency-
domain and time-domain.

Frequency-domain methods: Frequency-domain methods provide the
most sophisticated approach to analyzing the stability of a system with no
delay (h = 0). The necessary and sufficient condition for the stability of such
a system is A(A+ A4) < 0. When h > 0, frequency-domain methods yield the
result that system (1.1) is stable if and only if all the roots of its characteristic
function,

f) =det(\] — A — Age ) =0, (1.2)

have negative real parts. However, this equation is transcendental, which
makes it difficult to solve. Moreover, if the system has uncertainties and a
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time-varying delay, the solution is even more complicated. So the use of a
frequency-domain method to study time-delay systems has serious limita-
tions.

Time-domain methods: Time-domain methods are based primarily on
two famous theorems: the Lyapunov-Krasovskii stability theorem and the
Razumikhin theorem. They were established in the 1950s by the Russian
mathematicians Krasovskii and Razumikhin, respectively. The main idea is
to obtain a sufficient condition for the stability of system (1.1) by constructing
an appropriate Lyapunov-Krasovskii functional or an appropriate Lyapunov
function. This idea is theoretically very important; but until the 1990s, there
was no good way to implement it. Then the Matlab toolboxes appeared and
made it easy to construct Lyapunov-Krasovskii functionals and Lyapunov
functions, thus greatly promoting the development and application of these
methods. Since then, significant results have continued to appear one after an-
other (see [10] and references therein). Among them, two classes of sufficient
conditions have received a great deal of attention. One class is independent
of the length of the delay, and its members are called delay-independent con-
ditions. The other class makes use of information on the length of the delay,
and its members are called delay-dependent conditions.

The Lyapunov-Krasovskii functional candidate is generally chosen to be

Vi(z:) = zT(t)Pz(t) + /tih zT (s)Qxz(s)ds, (1.3)

where P > 0 and Q > 0 are to be determined and are called Lyapunov
matrices; and z; denotes the translation operator acting on the trajectory:
z4(0) = z(t+0) for some (non-zero) interval [—h, 0] (8 € [—h, 0]). Calculating
the derivative of V;j(z:) along the solutions of system (1.1) and restricting it
to less than zero yield the delay-independent stability condition of the system:

PA+ATP +Q PAy
* -Q

<0. (1.4)

Since this inequality is linear with respect to the matrix variables P and @,
it is called an LMI. If the LMI toolbox of Matlab yields solutions to LMI
(1.4) for these variables, then according to the Lyapunov-Krasovskii stability
theorem, system (1.1) is asymptotically stable for all A > 0; and furthermore,
an appropriate Lyapunov-Krasovskii functional is obtained.



