| S————rt

Advanced C

Herbert Schildt

Advanced C

Herbeﬁ Schildt

Osborne McGraw-Hill
Berkeley, California

Osborne M¢Graw-Hill
2600 Tenth Street
Berkeley, California 94710
U.S.A.

For information on translations an- hook distributors outside of the U.S.A., please write to
Osborne McGraw~Hill at the abc.c address,

MS-DOS is a registered trademark of Microsoft Corporation.

IBM is a registered trademark of International Business Machines, Inc.

CP/M is a registered trademark of Digital Research.

UNIX is a trademark of Bell Laboratories.

Advanced C

Copyright ©1986 by McGraw-Hill, Inc, All rights reserved. Printed in the United States of
America. Except as permitted under the Copyright Act of 1975, no part of this publication may
be reproduced or distributed in any form or by any means, or stored in a database or retrieval
system, without the prior written permission of the publisher, with the exception that the pro-
gram listings may be entered, stored, and .executed in a computer system, but they may not be
reproduced for publication. ' i

1234567890 DODO 898765
. ISBN 0-07-881208-9

Jon Erickson, Acquisitions Editor
Lorraing Aochi, Technical Editor
Tim Field, Technical Reviewer

Kevin Shafer, Senior Editor

Lynn Heimbucher, Editorial Assistant
Kay Luthin, Copy Editor

Yashi Okita, Cover Design

e &/ VYV D

INTRODUCTION ¢

& :
I have been fortunate to be able to write the kind of programming book that I
have always wanted. Years ago, when I started to program, I tried to find a
book that had algorithms for such tasks asorts, linked lists, simulations,
and expression parsers in a straightforward presentation. I wanted a book
that would give me insight into programming, but I also wanted a book that I
could take off the shelf to find what I needed when I needed it. Unfortu-
nately, I never found the exact book I was looking for —so I decided to write
it. o

This book explores a wide range of subjects and contains many useful
algorithms, functions, and approaches written in the C language. C is the de
facto systems programming language, as well as one of the most popular
general-purpose pro;essmnalﬁ)rogrammmg languages available. A wide va-
riety of C compilers is available for virtually all computers, and many are

“quite inexpensive. I used the Aztec C86 compiler for-the IBM PC; however,

with only a few exceptions, any version 7, UN IX-compatible C compiler will
compile and run all the:code in this book.

Chapter 1 begins with a brief history of C and a short review of the lan-
guage. The sorting of both arrays and disk files is explained in Chapter 2.
Chapter 3 deals with stacks, queues, linked lists, and binary trees. (You may ?

v

vi Advanced C

think that’s a lot to cover in one chapter; however, the subjects go together
nicely and form a solid unit.) Dynamic allocation methods are discussed in
Chapter 4. Chapter 5 presents an overview of operating-system interfacing
and assembly language linkage. Chapter 6 covers statistics and includes a
‘complete statistics program. Codes, ciphers, and data compression are the
‘topics of Chapter 7, which also includes a short history of cryptography.
Chapter 8 details several random number generators and then discusses how
to upe them in two simulations. The first simulation is a check-out line in a
storg; the second is a random-walk portfolio management program.

.« Chapter 9 is my personal favorite because it contains the complete code
_ for a recursive descent parser. Years ago, I would have given just about any-
< thing to have had that code! If you need to evaluate expressions, Chapter 9 is
for you. Chapters 10 and 11 discuss conversions from other languages, effi-
ciency, porting, and debugging.

H.S.

~—

~ Ifyou would like to obtain an IBM PC-compatible diskette that contains all of
the programs and algorithms in this book, please complete the order form
and mail it with payment enclosed. I you are in a hurry, you can call (217)
586-4021 and place your order by telephone.

Please send me‘ copies, at $29.95 each, of the programs in this book.
Foreign orders: Please add $5.00 for sbipping and handling. i
= | I!

Name

Address

City ' State Z1p
Telephone

Method of pay'menp: check ___ Visa___ MC ___

Credit card number:

Expiration date:

Signature:

Send to:
Herbert Schildt
RR 1, Box 130
Mahomet, IL 61853

WPIDS 0 NG IH WN=

CONTENTS

Introduction /
A Review of C
Sorting and Searching

Queues, Stacks, Linked Lists,
And Binary Trees -

Dynamic Allocation

Interfacing to Assembly Language
Routines and the Operating System

Statistics
Encryption and Data Compressmn

Random Number
Generators and Simulations

Expression Parsing and Evatuation

Converting Pascal and BASIC to C
Efficiency, Porting, and Debugging
The C Statement Summary

The C Standard Library

Index

M

49

ne

g3

EETERIT

A Review of C

CHAPTER 1

This book uses a problem-solving approach to illustrate advanced concepts in
the C programming language: it examines common programming tasks and
develops solutions with an emphasis on style and structure. Through this
approach, various advanced C topics and nuances are covered, as well as the
general programming theory behind each solution. You should have a work-
ing knowledge of C; however, your experience need not be extensive. A
review of the C language is presented later in this chapter.

Two notational conventions are used throughout this book. First, all vari-
able names and C keywords are printed in boldface..Second, all C functions
are boldface and are followed immediately by a set of parentheses. These
conventions will eliminate confusion between variable names and function
names. For example, a variable called “test” is printed as test, whereas a
function by the same name is printed as test().

.

2 Advanced C

All examples and programs in this book were compiled and run using
both the Aztec C compiler and the SuperSoft C compiler for the IBM PC.
Generally, any version 7 UNIX-compatible compiler, such as the Lattice or
Microsoft compilers, will compile and run the code in this book. There are
several compilers available for most computers, and you should have little
trouble finding one that suits your needs. Remember, however, that all com-
pilers differ slightly —especially in their libraries—so be sure to read the
user manual of the compiler that you are using.

The Origins of C

C was invented and first implemented by Dennis Ritchie on a DEC PDP-11
using the UNIX operating system. C is the result of a development process
that started with an older language called BCPL, which is still in use pri-
marily in Europe. BCPL, developed by Martin Richards, influenced a lan-
guage called B, which was invented by Ken Thompson and led to the
development of C.)

Although C has seven built-in data types, it is not a strongly typed language
in comparison to Pascal or Ada. C allows almost all type conversions, and
character and integer types can be intermixed freely in most expressions. No
run-time error checking —such as array boundary checking or argument-
type compatibility checking —is done. This is the responsibility of the
programmer. . :

C is special in that it allows the direct manipulation of bits, bytes, words,
and pointers. This makes it well suited for system-level programiming, where
these operations are common. Another advantage of C is that it has only 28
keywords, which are the commands that make up the C language. For com-
parison, consider IBM PC BASIC: it has 159 keywords. : .

Although initially developed to run under the UN IX operating system, C
has become so popular that compilers are available for virtually all comput-
ers and operating systems. This means that C code is very portable between
computers and operating systems, making it possible to write code once and
use it anywhere.

R
A Review of 6. 3

C as a Structured
rriab Language

e

C is commonly considered to be a structured language with some similarities
to Algol and Pascal. Although the term block-structured language does not
strictly apply to C in an academic sense, C is informally part of that lan-
guage group. The distinguishing feature of a block-structured language is
the compartmentalization of code and data. This means the language can sec-
tion off and hide from the rest of the program all information and instrue-
tions necessary to perform a specific task. Generally, compartmentalization
is achieved by subroutines with local variables, which are temporary. In this
way, it is possible to write subroutines so that the events occurring within
them cause no side effects in other parts of the program. Excessive use of
global variables (variables known throughout the entire program) may allow
bugs to creep into a program by allowing unwanted side effects. In C,all
subroutines are discrete functions. :

Functions are the building blocks of C in which all program activity
occurs. They allow specific tasks in a program to be defined and coded
separately. After debugging a function that uses only local variables, you can
rely on the function to work properly in various situations without creating
side effects in other parts of the program. All variables declared in a partic-
ular function will be known only to that function.

In C, using blocks of code also creates program structure. A block of code
is a logically connected group of program statements that can be treated as a
unit. It is created by placing lines of code between opening and closing curly
braces, as shown here:

if(x<10) (
printf("too low, try again');
reset_counter(-1);

5 J

In this example the two statements after the if between curly braces are both
executed if x is less than 10. These two statements together with the braces
represent a block of code. They are linked together: one of the statements
cannot execute without the other also executing. In C, every statement can be
either a single statement or a block of statements. The use of code blocks
creates readable programs with logic that is easy to follow.

4 Advanced C

C is a programmer’s language. Unlike most high-level computer lan-
guages, C imposes few restrictions on what you can do with it. By using C a
programmer can avoid using assembly code in all but the most demanding
situations. In fact, one motive for the invention of C was to provide an alter-
native to assembly language programming.

Assembly language uses a symbolic representation of the actual binary
code that the computer directly executes. Each assembly language operation
maps into a single task for the computer to perform. Although assembly lan-
guage gives programmers the potential for accomplishing tasks with maxi-
mum flexibility and efficiency, it is notoriously difficult to work with when
developing and debugging a program. Furthermore, since assembly lan-
guage is unstructured by nature, the final program tends to be “spaghetti
code,” a tangle of jumps, calls, and indexes. This makes assembly language
programs difficult to read, enhance, and maintain. !

Initially, C was used for systems programming. A systems program is
part of a large class of programs that form a portion of the operating system
of the computer or its support utilities. For example, the following are com-
monly called systems programs:

. Operating systems
. Inte.rpreters‘

. Editors

- Assemblers

. Compilers

. Database managers

As C grew in popularity, many programmers began to use C to program
all tasks because of its portability and efficiency. Since there are C compilers
for virtually all computers, it is easy to take code written for one machine
and then compile and run it with few or no changes on another machine. This
portability saves both time and money. C compilers also tend to produce
tight, fast object code —smaller and faster than most BASIC compilers, for
example.

Perhaps the real reason that C is used in all types of programming tasks
is because programmers like it. C has the speed of assembler and the exten-
sibility of FORTH, while having few of the restrictions of Pascal. A C pro-
grammer can create and maintain a unique library of functions that have
been tailored to his or her own personality. Because C allows—and indeed

A Reviewof C 5

encourages —separate compilation, large projects are easily managed.

Many programs in this book use a function called getnum(). C has no
built-in method to enter decimal numbers from the keyboard and, contrary
to popular belief, the standard library function scanf() is generally unsuit-
able for human use. Therefore, the special function getnum() is used when-
ever a decimal number needs to be read from the keyboard. The source code
for getnum() is-shown here:

getnum() /* read a decimal number from the
keyboard */
{
char s[80];
gets(s);
return(atoi{s));
>

The atoi() function is the standard library function used to convert a string
of digits into an integer. If your compiler is supplied with a function similar
to getnum(), feel free to substitute it.

A Brief Review

Before you begin to explore various programming problems and solutions,
read the rest of this chapter to review the C language. If you are an expe-
rienced C programmer, skip to Chapter 2.

Refer to Appendix A for a statement sumntary of most of the keywords in
C, a review of the preprocessor directives, and a description of some of the
standard library functions used in this book.

The following 28 keywords, combined with the formal C syntax, form the
C programming language:

auto double if static
break else int struct
case entry long switch
char extern register typedef
continue float return union
default for short unsigned

do goto sizeof while

6 Advanced C

" C keywords are always in lowercase letters. In C, uppercase or lowercase
makes a difference; that is, else is a keyword, but ELSE is not.

o

Vam'ables — Types and Declarations

C has seven built-in data types, as shown here:

Data Type C Keyword Equivalent
character char
short integer g short int
integer int
unsigned integer unsigred int
long integer long int
floating point _ float
double floating point double

Some implementations of C also support unsigned long int and unsxgned
short int.

Variable names are strings of letters from one to several characters long;
the maximum length depends on your compiler. For clarity, the underscore
may also be used as part of the variable name (for example, first__time).
Don’t forget that in C, uppercase and lowercase are different—test and
TEST will be two different variables.

All variables must be declared prior to use. The general form of the dec-
Tarstion is '

type variable_name;

For example, to declare x to be a floating point, y to be an integer, and ch to
be a character, you would type

float x;
int y;
char ch;

In addition to the built-in types, you can creaie combinations of built-in
types by using struct and union. You can also create new names for variable
types-by using typedef.

A Review of C 7

A structure is a collection of variables grouped and referenced under one
name. The general form of a structure declaration is

struct struct_name {
element 1;
element 2;

} struct__variable;

As an example, the following structure has two elements: name, a character
array, and balance, a floating-point number.

struct client {
char namel801];
float balance;
};

To reference individual structure elements, the dot operator is used if the
structure is global or declared in the function referencing it. The arrow
operator is used in all other cases.

When two or more variables share the same mernory, a union is defined.
The general form for a union is . ,

union union_name {
element 1;
element 2;

} union__variable;

The elements of a union overlay each other. For example, the following
declares a union t, which in memory looks like Figure 1-1. ~

union tom {) ;
char ch;
int x;

o o

The individual variables that comprise the union are referenced using the

8 Advanced C

byte 1 byte 2

ch

Figure 1-1. The union t in memory

dot operator if the union is global or is declared in the same function as the
- reference. The arrow operator is used in all other cases.

The three type modifiers in C—extern, register, and static —can be
used to alter the way C treats the variables that follow them. If the extern
modifier is placed before a variable name, the compiler will know that the
variable has been declared elsewhere. The extern modifier is commonly
used when there are two or more files sharing the same global variables.

The register modifier can be used only on local integer or character vari-
ables. It causes the compiler to try to keep the value in a register of the CPU
- instead of placing it in memory. This can make all references to that variable
extremely fast. Throughout this book, register variables are used for loop
control. For example, the following function uses a register variable for loop
control:

f1()

{
register int t;
for (t=0;t<10000;++t) {

}

The static modifier instructs the C compiler to keep a local variable in
existence during the lifetime of the program, instead of creating and destroy-
ing it. Remember that the values of local variables are discarded when a
function finishes and returns. Using static maintains the value of a variable
between function calls. i £

.

A Reviewof C 9

Arrays You may declare arrays on any of the data types discussed ear-
lier. For example, to declare an integer array x of 100 elements, you would
write

int xC100];

This creates an array that is 100 elements long; the first element is 0 and the
last is 99. For example, this loop loads the numbers 0 through 99 into array x:

for(t=0;t<100; t++) x[tl=t;
Muitidimensional arrays are declared by placing the additional dimen-
sions inside another pair of brackets. For example, to declare a 10-by-20-

integer array, you would write

. int x[C101C201;

Operators

C has a rich set of operators that can be divided into classes: arithmetic,
relational and logical, bitwise, pointer, assignment, and miscellaneous.

Arithmetic Operators C has seven arithmetic operators:

Arithmetic Operator Action

- subtraction, unary minus
+ addition

. multiplication

/ division

% modulo division

- T decrement

+4+ increment

The precedence of these operators is
highest ++ —— —(unary minus)
L] / %
lowest + —

Operators on the same precedence level are evaluated from left to right.

10 Advanced C

‘Relational and Logical Operators Relational and logical operators

are used to produce TRUE/FALSE results and are often used together. In C,
any nonzero number evaluates TRUE. However, a C relational or logical
operator produces the number 1 for TRUE and 0 for FALSE. Here are the
relational and logical operators:

Relational Operator Meaning
> greater than
>= greater than or equal
< less than
<= less than or equal
== equal
I= not equal
Logical Operator Meaning
&& AND
i OR
! NOT

The precedence of these operators is

highest !
DS =ing] &=

== |=

&&

lowest

For example, this expression evaluates as TRUE:

(100<200) && 10

Bitwise Operators Unlike most other programming languages, C pro-
vides bitwise operators that manipulate the actual bits inside a variable. The
bitwise operators, listed here, can only be used on integers or characters.

Bitwise Operator Meaning
& AND
| - OR
A XOR
~ one’s complement
>> right shift

<< left shift

