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INTRODUCTION

THE STUDY of radiative transfer is interesting for a variety of physical and mathematical
reasons. Not the least of these is its application to the determination of the constitution of
planetary atmospheres. This is an inverse problem in which theory and observation must be
combined to ascertain unknown cause-and-effect relations' and unknown parameters. The
analytic results obtained in the study of radiative transferomay also be used in neutron-
transport theory because the fundamental equations of the two theories are closely related.
Thus, for example, the techniques presented here may be used in the study of shielding and
in the design of nuclear reactors.

Even simplified versions of the physical processes occurring in radiative transfer have
given rise to a large number of intriguing, difficult mathematical problems requiring a quite
sophisticated level of analysis. These results may be found in the books by Hopf [26],
Chandrasekhar [21], and Busbridge [20], which contain extensive references.

The classical approach is through the linearized transport equation. However, much
difficulty is encountered along the way in establishing existence and uniqueness of solution,
and particularly in obtaining a computational procedure.

In a fundamental paper published in 1943, the astrophysicist Ambarzumian [2] pre-
sented a radically new approach to the mathematical formulation of these problems, which
yiclded a new and vastly improved computational treatment for certain geometrical config-
urations of the medium. This novel and ingenious approach, based on the use of functional
equations and physically intuitive principles of invariance, exploited the multistage aspect of
the physical processes involved in radiative transfer.

As a result of this pioneering work, new analytic treatments were made available, and
simplified computational solutions were obtained.

These ideas were further developed and extensively generalized by Chandrasekhar in a
series of fundamental papers and in 1950 in his book cited above. Many otherwise intract-
able problems were tamed, and great advances were made.
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2 A INVARIANT IMBEDDING AND RADIATIVE TRANSFER

In turn, the “principles of invariance” of Ambarzumian-Chandrasekhar were extended
and generalized by Bellman and Kalaba in 1956 and 1957, [9], [10], and applied to the
study of inhomogeneous regions of plane, cylindrical, or spherical type, and to stratified
regions in general. Results of this nature in an abstract setting were extensively discussed by
Preisendorfer [30] and many detailed results have been given by Ueno [40, 41, 42], where
other references may be found.

The systematic use of invariance concepts and functional equations in mathematical
physics is called invariant imbedding. The ideas behind the development given here stem
from the theory of dynamic programming on the one hand (Bellman [5], [6]), where the
muitistage aspect of variational and optimization processes is stressed, and on the other from
the generalized theory of branching processes created by Harris, Jinossy, Ramakrishnan, Moyal,
and others (Harris [24], [25], and Bellman and Harris [7], [8]1), where the “point of
regeneration” technique occupies a basic role.

Naturally, 2 method as basic and natural as that of the use of recurrence, or functional
equations, in mathematical physics has many different origins. We can trace it in papers of
Rayleigh and Stokes, and it was quite explicitly given in Schmidt [39] in 1907 in a paper
that apparently was never followed up. Independently, Redheffer applied invariant-imbed-
ding techniques to study various systems of differential equations arising in scattering prob-
lems and to some electromagnetic questions; see Redheffer [36, 37, 381 for a detailed account
and references. Many examples also occur in transmission-line theory in connection with
ladder networks, and so on, where the use of continued fractions is standard.

In conjunction with Wing, the authors have applied the general methods of invariant
imbedding to neutron-transport theory, furnishing new and occasionally improved methods
for the studies of shielding and the determination of critical mass of certain geometries.

In a survey paper (Bellman, Kalaba, and Wing [161]), applications of these techniques
to scattering and diffusion theory are given. Further work along these lines may be found in
the papers of Ramakrishnan [33, 34, 351 and in the works of Redheffer cited above.

In other joint papers, Bellman, Kalaba, and Wing showed how invariant imbedding
could be used to reduce two-point boundary-value problems to initial-value problems [17],
(18], to show how existence and uniqueness theorems could be obtained on the basis of
simple physical-conservation principles [17], to establish connections between classical varia-
tional principles and invariant imbedding [19], and, finally, to develop connections between
invariant imbedding and the classical transport equation; see Wing [43], Bellman and -
Kalaba [151, and Mullikin [29].
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Parallel to this activity, Bellman and Kalaba showed how invariant imbedding could be
used in the study of deterministic and stochastic wave propagation [11, 12, 13, 14]; see also
Atkinson [4].

It is certainly important to develop new mathematical formulations of physical processes
and new analytic treatments of the fundamental equations. It is also essential to demonstrate
that these new techniques actually do furnish efficient computational solutions. Those read-
ers familiar with the idiosyncrasies of computers will confirm the observation that no numer-
ical algorithm can be accepted on faith. Until actual numerical results are obtained, we must
withhold judgment as to the efficacy of a method.

Ambarzumian and Chandrasekhar showed that their techniques were computatxonally
effective in the study of semi-infinite plane regions and of homogeneous plane regions of
finite thickness. The algorithm that we present is somewhat more direct than these techniques
and seems advantageous for the direct computation of the quantities of most physical interest.
In this first study we consider isotropic scattering that does not change the state of polariza-
tion of the incident flux in plane regions of finite thickness. Although the algorithm we pre-
sent will handle the case in which both the scattering coefficient and the absorption coeffi-
cient vary with the depth in the region, we have concentrated on the case of a homogeneous
plane region of finite thickness in order to present a fairly complete analysis of the effect of
variation of both thickness and absorption coefficient. To verify the accuracy of our compu-
tational results, we compared them with the limiting case of infinite thickness, given by
Ambarzumian, and with some results of Chandrasekhar for the finite case. We found com-
plete agreement. In addition, we used slightly different computational techniques and again
found agreement. We thus have a fair amount of confidence in the tables we present.

There were several reasons for concentrating initially on the case of isotropic scattering,
even though real scattering laws are more complicated. First, in order to validate the compu-
tational methods and to decide such questions as what sort of approximations can be used, it
is necessary to perform numerous experimental computations, necessitating assumptions that
can be handled relatively rapidly and that can be checked against available bench marks.
Secondly, the isotropic case has been studied in the literature more extensively than any other
case, and it is desirable to have tables against which the various analytic approximations can
be checked: We believe that the tables are also of value in that they will assist in estimating
the effects of nonisotropy or polarization, after some of the more complicated cases have been
computed. Once we abandon the assumption of isotropy, the possible scattering laws are end-
less and it is desirable to have standards against which deviations can be measured.

Let us also mention the work of Sekera and Viezee [44], which demonstrates how the
solution for the flat medium can be used to represent the reflection of parallel sunlight on
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a spherical planetary atmosphere, and that of Deirmendjian and Clasen [45] on the aniso-
tropy of the scattering of real particles.

The present report is divided into four parts. In the first part, we briefly sketch the phjrsi-
cal background of the problem and present the fundamental equations of classical transport
theory and of invariant imbedding. The second part contains an explanation of the method
used to obtain numerical solutions of the equation furnished by invariant imbedding, Here
we use the standard technique of Gaussian quadrature. The third pa.rt' is devoted to a study of
certain analytic properties of the solution as a function of the thickness of the plane region,
with particular attention to the limiting behavior of the reflected flux as the finite region
expands into the infinite region. Finally, the fourth part presents tables of values of the
reflected intensity as a function of the angle of incidence, the angle of reflection, the thickness
of the plane-parallel slab, and the ratio of absorption to reradiation. Several typical graphs
are given.

We hope at a later time to present computations for more complicated kinds of scatter-
ing laws and for cases in which the radiation is time dependent.

We wish to thank Z. Sekera, D. Deirmendjian, and T. E. Harris for a number of illu-
minating discussions and, particularly the last two, for some very helpful suggestions con-
cerning the text of this monograph.

This study was prepared as part of a program of research undertaken for the Advanced
Research Projects Agency by The RAND Corporation.



CHAPTER ONE
THE PHYSICAL MODEL

1. THE RADIATIVE-TRANSFER MODEL

LET Us begin by desc'ribing the particular physical model of radiative transfer we shall
employ in-our further analysis. We assume that parallel rays of light of uniform intensity

are incident upon an inhomogeneous slab composed of material that absorbs and scatters
light. (See Fig. 1.) '

Angle of

. incidence
k

Angle of
retlection

7

-
X

Fi6. 1—Incident Rays upon a Plane-parallel Stab
of Thickness x

It is desired to determine the intensity of the diffusely reflected light as a function of

the intensity of the incident flux, the composition of the slab, and the angles of incidence
and reflection.

The properties of the medium composing the slab are the following:
1. In traversing a distance 4 in any direction in the slab, the intensity I of the beam

5



6 INVARIANT IMBEDDING AND RADIATIVE TRANSFER

is reduced by absorption to Ie - o(d). This relation will be used only for infinitesimal
distances, so that we may write this as I(1 — ad) + o(d).

A fraction A of the absorbed beam is reradiated, and the remaining fraction 1 —2A
is lost.” As a consequence of the inhomogeneity of the medium, the quantities # and A are
dependent, in general, on the part of the slab through which the beam is passing. We assume,
however, that they depend only on the depth inside the slab, ie., that the medium is plane
stratified.

2. Radiation is scattered isotropically without changing the polarization. The light that
is scattered and reradiated is taken to consist of photons that are treated as if they were point
particles. Because of the symmetry of the situation, azimuthal angles may be neglected, and
only the angles 6 and y pictured in Fig. 1 are of significance to the discussion.

2. THE CLASSICAL TRANSPORYT EQUATION

For the homogeneous plane-parallel case of finite thickness, the classical transport equa-
tion governing densities is

N * "N
(2.1) paa—x+¢N=%j: N(x, ) dy';
it has as possible boundary conditions
(2.2) N(—b p)=¢(r), u>0,

N(+b,p)=v¥(s), »<oO.

It is not a trivial matter to obtain a computational solution of this equation. Numerical
results have been obtained by Chandrasekhar and may be found in his book. The derivation
of the equation is also given there. Our aim here is to present a technique that is equally
applicable to the inhomogeneous case, one that has not been previously treated by means of
invariance techniques. Further treatment of this equation may be found in papers by Lehner
and Wing [27] and by Wing [43].

3. INVARIANT IMBEDDING

In the classical approach, the emphasis is on the internal fluxes, which in the limiting
cases—the boundaries—yield the reflected and transmitted fluxes. Here, we reverse the roles
and concentrate on the reflected and transmitted fluxes as the primary objects of investiga-

*) is usually called the «/bedo for single scattering.
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tion. It can be shown in several ways that the internal fluxes can be obtained from these
quantities; see Bellman, Kalaba, and Wing [16].
. Let us introduce the function

(31) p(¥, 8, x) = the specific intensity of reflected radiation, in the direction 6, per unit
area on the face of the slab of thickness x, due to 2 beam of unit
intensity incident at angle y, the area again being taken parallel to the
face of the slab as shown in Fig. 1.

Our aim is now to obtain an equation for this function of the three independent variables
9, ¢, and x. Following the usual procedure of invariant imbedding, as described in Bellman
and Kalaba [9], [ 10], we readily obtain a nonlinear integrodifferential equation for p(y, 6, x).

Without going into the analytic details, which_may be found in the foregoing references,
and for the case of infinite thickness in the books of Ambarzumian and Chandrasekhar, let
us briefly indicate the principal idea.

The reflected flux, as noted above, is taken to be a function of the incident dngle, the
reflected angle, and the thickness x of the slab. After the incident radiation has passed through
an infinitesimal slab of thickness A, it and the new radiation produced by interaction with
scatterers in the infinitesimal slab between x and x — A look into a slab of thickness x — A.
Hence the reflected radiation from this slab can be described in terms of the same function
p(¥, 8, x — A), where the angles are now dutnmy variables. Taking account of all interactions
yielding terms of lower order than A?, we obtain a differential-integral equation for p.

Using these observations, we may write

(3-2) p(y, 8, x + &) == [1 — ﬂﬂ A]P(% 8, x) [1 _ zgsxz A] + 4(4i);\0(sx'lZA

44rcos¢

42 _[ "'M o(4, 0, %) sin 0" 40"

4rcos @’

/2
+ (20 [ o9, 0,0) LD i g
. j:m o(¥', 0, x) siny’ dy’ + o(a).

The terms on the right-hand side of (3.2) arise in the following manner. The first accounts
for absorption losses in passing through the layer of thickness A on the way in and on the
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way out. The second is the contribution due to direct scattering from the layer of thickness
A. The third is due to light that is scattered in the layer of thickness A and reflected from the
slab extending from 0 to x. The fourth arises from light reflected from the slab extending
from 0 to x, and scattered in the slab of thickness A. The last, the nonlinear term, represents
the contribution of light that is reflected from the-slab of thickness x, scattered in the slab
of thickness A, and rereflected from the slab of thickness x.

Upon passage to the limit we find the equation

(33) » =J——(—-‘4:)'\ = (x)(coso + ) S ()

*/2 TR 37
, cos ¢ cos ¢ 2cosy . p('["o’x)m#’ “
+ a!x):\(x f o(¢, 0, x) smﬂ d0'+1ra(x))t(x)f o 0' P('f’? &, x) de’
f' o(¥. 8, %) sin ¢’ dy/.

Furthermore, for initial condition we have

(34) p(¥,6,0) =0.

The traditional astrophysical formulation involves the employment of unit areas normal
to the direction of flow, rather than parallel to the face of the slab. In addition,

(35) u=cosy
.and
(3.6) v=cos §

are used as measures of the angular variables, and the magnitude of the incident intensity is
taken to be =. If we set

(7) (o m ) =mp

we find that the astrophysical diffuse-reflection function r satisfies the equation

(3.8) ¢‘=a(x21:(x) — a( )( _) a(x),\(x)f "o, )Y o

+ 2R 1 (s, 4, ) d + a(x)M) f #(t/, 4, x) A/

. f‘ r(v, 4, x) 5:7,

along with the initial condition
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(3.9) r(v, #,0) =0.
In order to obtain a function that is symmetric in its angular arguments, we write

R(v, 4, x)

(3.10) r{v, u, x) = PR

Then it can be seen that the function R satisfies the equation

(3.11) Z(lex(x_)[ R+ a(x)(i— + %)R]
—.__—-[1 +-;—j: R(v, 4, %) du—':’:”:l + —;—j: R(¥, #, x) JT”’]

This is the equation we wish to study. In our computational considerations, we shall assume
that

(3.12) a(x) =1,

- which implies that the mean free path of a particle in the medium is unity. In addition, the
thickness x of the medium will be measured in terms of the mean free path, the natural unit
of length, and we shall consider only those cases in which

(3.13) A == const,

though our programs are written for general functions A(x).

4. DISCUSSION

Let us examine the differences between the two formulations. In the classical approach,
we are led to a linear functional equation (2.1) with a two-point boundary condition (2.2).
The theory of invariant imbedding leads to a nonlinear functional equation with an initial
condition. Generally speaking, the mechanics of solving differential equations by means of
digital computers is such that it is preferable to solve nonlinear initial-value problems, as
opposed to linear problems with two-point conditions. The reason for this is that the initial-
value problem can be resolved by means of a simple iteration procedure, which is ideally
suited to digital computers, whereas the two-point problem requires at some stage the solu-
tion of a large system of linear equations. Furthermore, in the course of obtaining the solu-
tion for a given thickness, the invariant-imbedding approach automatically grinds out the
solution for all intermediate thicknesses, whereas—in the general inhomogeneous case—the
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conventional approach must be carried out for each thickness. In homogeneous cases, this
difficulty can occasionally be overcome (see Chandrasekhar [21], in which invariance prin-
ciples are used for this purpose). One of the advantages of focusing attention on the reflected
flux lies in the fact that the internal fluxes can readily be expressed in terms of these quan-
tities; see Bellman, Kalaba, and Wing [18].

Further discussion of this important use of invariance principles to convert two-point
boundary-value problems into initial-value problems will be found in Bellman, Kalaba, and
Wing (161, [18]. These references describe the application of the theory of dynamic pro-
gramming to variational problems,

In the next chapter, we shall discuss different computational approaches to the numer-
ical solution of (3.11).



CHAPTER TWO
COMPUTATIONAL TECHNIQUES

1. GAUSSIAN QUADRATURE

IN ORDER to perform an integration by means of a digital computer, it is necessary to reduce
the process to an arithmetic operation. This, of course, requires an approximation technique
of one type or another. The method we shall employ is one devised by Gauss, which has
been used repeatedly with success in neutron-transport theory and radiative transfer theory;
see Chandrasekhar [21].

Suppose that the 2N numbers 4;, x;, £#=1, 2," -+, N are determined so that the approxi-
mate relation

1 N
1.1 f(x)dx=" " af(x
(L) [ 16 dx=3- afs)
is exact if f(x) is a polynomial of degree 2N — 1 or less. Choosing f(x) to have the form
(1.2)- f(x) =x"Py(x),

for the N different values r==0, 1, -+, N — 1, where P,(x) is the Legendre polynomial of
degree N, it is easy to see that P, (x,) ==0 for £=1, 2," -, N. Consequently, the x, must be
the roots of the Nth Legendre polynomial.

Choosing the polynomial f(x) to be 0 at x=ux,, x,,***, xy, except at x,, where it has
the value 1, namely

(13) » f) = s P x()’;l oL

we obtain the value

v Py(x) dx
1.4 _Pu(x)ax =12 N.
(14) a (x — x)Py(x) i é=12-N

These numbers, 4,, which can be evaluated in simpler terms, are called the Christoffel numbers.

11
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They have been extensively tabulated and can be readily generated by means of simple
algorithms.

A simple change of variable enables us to use a similar formula for any finite interval
[4,b] in place of [—1,1]. In particular, we shall use the interval [0, 11.

2. ZEROS OF LEGENDRE POLYNOMIALS; CHRISTOFFEL NUMBERS

Table 1 gives the zeros {x,} of the Legendre polynomial P,(x), »==1,2,'+,12, and
the corresponding weights {4,} for Gauss' mechanical quadrature formula (1.1). Since
Xy=~—x, ,,, and 4, =a,_,., only half of the values are tabulated.

Table 1
ZEROS x; OF LEGENDRE PoLYNOMIALS; CHRISTOFFEL INUMBERS 4y

L] & E ay,
2 1 0.577350269189626 1.000000000000000
3 1 0.774396669241483 0.555555555553556
2 0.000000000000000 0.888888888888889
4 1 0.339981043584856 0.6521451354862546
2 0.861136311594053 0.347854845137454
5 1 0.538469310105683 0.478628670499366
2 0.906179845938664 0.236926885056189
3 0.000000000000000 0.568888888888889
6 1 0.238619186083197 0.467913934572691
2 0.661209386466265 0.360761573048139
3 0.932469514203152 0.171324492379170
7 1 0.405845151377397 0.381830050505119
2 0.741531185599394 0.279703391489277
3 0.949107912342759 0.129484966168870
4 ‘ 0.000000000000000 0.417939183673469
8 1 0.183434642495650 0.362683783378362
2 0.525532409916329 0.313706645877887
3 0.796666477413627 0.222381034453374
4 0.960289836497536 0.101228536290376
9 1 0.324253423403809 0.312347077040003
2 0.613371432700590 0.260610696402933
3 0.836031107326636 0.180648160694857
4 0.968160239507626 0.081274388361574
) 0.000000000000000 0.330239355001260
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Table 1—continued

L & £ a

10 1 0.148874338981631 0.295524224714753
2 0.433395394129247 0.269266719309996
3 0.679409368299024 0.219086362515982
4 0.865063366688985 0.149451349150581
S 0.973906528517172 0.066671344308688

11 1 0.269543155952345 0.262804544510247
2 0.519096129206812 0.233193764591990
3 0.730152005574049 0.186290210927734
4 0.887062599768095 0.125580369464905
5 0.978228658146057 0.055668567116174
6 0.000000000000000 0.272925086777901

12 1 0.125233408511469 0.249147045813403
2 0.367831498998180 0.233492536538355
3 0.587317954286617 0.203167426723066
4 0.769902674194305 0.160078328543346
b1 0.904117256370475 0.106939325995318
6 0.981560634246719 0.047175336386512

3. APPROXIMATE SYSTEM OF DIFFERENTIAL EQUATIONS

By means of the quadrature formula

S st =3 e,

(3.1)

1

where the ¢, and w, are determined from the foregoing quadrature formula through a simple
change of scale, equation (3.11) of Chapter 1 is replaced by the approximate equation

1 L U, 1

(32) sy 22 4 (L4 Dresa 0|
1| Ko 1} & ¢,
=1+3 ;ik(w,‘.u,x) +5 ;il{(ﬂ,zk,x)
1| &K« e
+3 Zﬂ:;";R(w,‘,u,x) Z;z—:R(v,z,,x) ,

with the initial condition
(3.3) R(v, #,0) =0.



