i s
e S Y .«.VM!WM.'V

LRI e ».mfi, ,

S A
g " i PN

Software
Interpreters
for tHomas c. McINTIRE ez
Microcomputers

John Wiley & Sons
New York * Santa Barbara * Chichester * Brisbane * Toronto

Copyright © 1978, by John Wiley & Sons, Inc.
All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of

this work beyond that permitted by Sections

107 and 108 of the 1976 United States Copyright
Act without the permission of the copyright
owner is unlawful. Requests for permission

or further information should be addressed to
the Permissions Department, John Wiley & Sons.

Library of Congress Cataloging in Publication Data:

Mcintire, Thomas C 1942-
Software interpreters for microcomputers.

Bibliography: p.

Includes index.

1. Microcomputers—Programming. 2. Interpreters
(Computer programs) |. Title.

QA76.6.M323 001.6’425 78-6608
ISBN 0-471-02678-6

Printed in the United States of America

10987654321

Software Interpreters for Microcomputers

Preface

icroprocessor technology has come of age. The computer-on-a-chip is being
used in an ever-widening variety of applications. The data processing industry
in particular is benefiting from the favorable price-performance ratios possible
with microcomputers—computers that have a micro as the central processing unit.
Business data processing generally favors the use of high-level programming lan-
guages, and interpreters provide a software method for interfacing various languages
to microcomputers.

For the systems architect we present the arguments, both pro and con, for select-
ing the appropriate software architecture. For the software designer, the significance of
different language attributes is described along with the considerations necessary for
an interpreter-driven system.

In concept at least, programming a mucrocomputer is not very different from
programming other computers. Thus, much of this book applies to interpreter designs
for systems other than micros, although many of the specifics to be considered for
microprocessors are identified. Also, the software engineer of the microcomputer in-
terpretive system must eke out the maximum of performance, often in the minimum of
space. For this reason the final chapters of this book are devoted to optimization
techniques.

This book should also be useful to the applications programmer. How do inter-
preters work? Why are certain functions slower than others? Why do some routines
consume large amounts of memory? In general, the answers to these questions can be
found here, and more optimum programs can result.

Before modifications or improvements to an existing system can be attempted,
the maintenance programmer must understand the overall philosophy of interpreters.
In this case, study should include the rationale that influences the design of such
systems. Therefore, many of the trade-offs that may be made in the design of an inter-
preter are discussed.

\'

PREFACE

The basic principle of software interpreters is simple, but individual component
routines may be complex and the overall size of the system may be large. For the benefit
of the software engineering student, then, material is included on how to approach the
design phase and on how to begin implementation and testing. Some suggestions are
included on systems documentation.

The choice of the tutorial model (BASIC) was made with particular concern for
that rapidly growing market: the home computer hobbyist. A number of BASIC inter-
preters are commercially available, or the hobbyist may wish to attempt his own design
or modify an existing system. The model described here should provide the basis for
many forms of experimentation.

Although the discussion is not complete in every area, almost every facet of
interpreters, their use, and their design, is touched upon.

Thomas C. Mcintire

Acknowledgments

and expertise of many people contributed to its completion. | am unable to ascer-

tain the origins of many of the concepts and methods | have described, but | wish
to acknowledge the contributions of the professionals of the industry and of computer
scientists in general.

| also thank those people whose personal assistance to me made this work
possible.

For both stimuli and critique, | must thank my friend, associate, and boss, Keith
Lohmuller. | express my gratitude also to Bill Bird, Assistant Vice-President, Marketing
Software Programs, for inviting me into the fold of the NCR Corporation; association
with the many professionals of this prestigious industry giant has provided a valuable
research vehicle and has enriched my life.

It is often said that behind every man stands a woman—and so it is with me.
Notwithstanding her continuous help, encouragement, and confidence, | can offer here
only a simple “‘thank you’’ to my wife, Gloria for her many hours of typing.

As to the practice of programming, | must attribute eons of experience to Steve
Clark. Our years together in the bit-bending business leaves me forever in his debt for
the knowledge and help he has so freely shared. His technical critique of the manu-
script merely adds to my continuing indebtedness.

No writer is truly self-sufficient, and my thanks also go to Ken Sessions as my
editor and mentor.

To the readers doing the final tally: where you are enlightened and informed, it is
due to the efforts of many; any ambiguity is entirely my own.

The writing of this book was an arduous undertaking, and the thoughts, efforts,

T. C. Mclintire

Vil

Author’s Note

he organization of this book attempts to enfold the many topical ramifications

into a usable form. Throughout | have sought a reasonable balance between

thoroughness and brevity. The intent has been to provide sufficient detail for the
interested student without trying the patience of the professional.

The background material in Part 1 may appear very basic to veteran readers, but
it is necessary to establish a mutual ground for communication. Interpreter usage
rationale is examined, and microprocessors are explained.

The categorization of interpreter types in Part 2 is for the benefit of later discus-
sion. Since no finite scheme of description is fully suitable for naming different types of
interpreters, this part provides a base address for indirect referencing.

In Part 3 | enumerate all the various aspects the designer of an interpreter must
consider. The critical user of an interpretive system may gain insight as to the scope of
the designer’s task. For those embarking on interpreter designs, | have included mate-
rial on a methodology for problem definition. The template form of block diagramming
is my own interpretation of a technique that is actually employed in some software
development shops.’

The model described in Part 4 was selected to show implementation techniques
for solving certain interpreter design problems.

Part 5 discusses some of the many ‘‘tricks of the trade” in the programming
profession. Since entire textbooks can be and have been written on these subjects, it
was necessary to limit this part. All programming efforts must contend with speed and
overhead tradeoffs. Interpreters are at least one step removed from the primary func-
tion of using a computer to do a problem task, and it is especially important to practice
economies in their design. Although placed physically last in the book, techniques and
methods for programming specific functions must temper many decisions early in the
process of design.

X

AUTHOR'S NOTE

In the same context, | offer this advice to the novice designer: Every effort ex-
pended during design and problem definition will be well repaid in the final analysis.

T.C. Mclntire

Software Interpreters for Microcomputers

Contents

PART 1 Background
1 Why Interpreters?

1.1 Advantages 2
1.2 Disadvantages 6
1.3 Alternatives 10

2 Microcomputers

2.1 The 4-Bit Micro 15
2.2 The 8-Bit Micro 17
2.3 The 16-Bit Micro 20

3 Languages

3.1 Machine Languages 25
3.2 Assemblers 28
3.3 High-Level Languages 34

14

24

CO

41

NTENTS

PART 2 Interpreter Architectures

4 Interpreter. Types

Expanded Source 42

4.2 Condensed Source 46
4.3 ObjectCode 50

5.1

5 Interpreter Storage

Macro and Micro Instructions 59

5.2 Software Interpretives 63
5.3 Firmware Interpretives 67

6.1

PART 3 Interpreters—A Design
Approach

6 A Software Taxonomy

System Attributes 74

6.2 Language Considerations 81
6.3 Application Requirements 87

71
7.2

7 Architecture Selection

When to Interpret 96
Where to Interpret 100

7.3 Howtointerpret 102

8 Interface Requirements

Operating System 108
Central Processing Unit 111
Peripherals 114
Application Program 116
Operator 121

42

59

71

74

108

CONTENTS
9 A Software Desigh Template 127

9.1 Components of an Interpreter 128
9.2 Monitor 130

9.3 Program Control 132

9.4 Interpreters 134

9.5 Resource Managers 134

PART 4 A Design Model—Source Code
Interpreter for BASIC 137

1 0 The Design Taxonomy 139

10.1 The System 139
10.2 The Language 144
10.3 The Application Requirements 146

1 1 The Architecture 149

11.1 Software Loading 149
11.2 Software Storage 152
11.3 Program Execution 157

1 2 interpreter Interfacing 168

12.1 System Interfacing 168
12.2 Application Interface 176
12.3 Operator Interface 183

1 3 The Design Template 189

13.1 The Monitor Section 189

13.2 The Program Control Section 194
13.3 The Interpretives Strings Section 198
13.4 The Resource Manager Section 200

CONTENTS
PART 5 Optimization Techniques

1 4 Execution Speed

14.1 Linear and Reiterative Functions 206
14.2 Multitasking Operations 210
14.3 Addressing Algorithms 214

1 5 Memory Utilization

15.1 Data Concentration 218
15.2 Overlay Schemes 221
15.3 Memory Use Alternatives 225

Bibliography

Index

Xiv

203

205

218

228

229

PART
Background

Interpret. .. to translate nonmachine language into
machine language.

Interpreter. .. a software routine that, as processing
progresses, translates a stored program expressed in
pseudo-code into machine code and executes the intended
operations.

thorough discussion of computer interpreters must include the

why function. Since computers are problem-solving machines

and their programs constitute a part of the total system, we must
examine the solution capability of interpreter programs. Interpreters are
generally considered as part of the software. To appreciate the role of
interpreters it is necessary to identify those processing problem
attributes that are common to the use of all computers, regardless of
specific job tasks.

In interpretative software systems, as in all technologies, there
are advantages and disadvantages associated with various
implementation techniques. We shall therefore examine several
alternative methods of system design so that we may judge when
interpreters should be used.

In advancing our theme that microcomputers tend to motivate the
use of interpreters, we must appreciate the nature of these stimuli. The
widespread usage of microprocessor-based systems attests to their
acceptance and need. Representative micros are included in this part to
show the causative factors that influence the popularity of interpreters.

Chapter

Why Interpreters?

computers implies that there are decided advantages to their use. There is often

no perfect single solution to a large group of problems. Since interpreters are not
used by every system, we can infer that there are some disadvantages. In the selection
of choices we must analyze both the positive and the negative aspects.

In addition to the good and bad points, alternative possibilities must be identified
and examined in order to arrive at.a sound conclusion. This chapter deals with the
favorable aspects of interpreters, the unfavorable aspects, and some of the alternatives
frequently used.

T he fact that interpretive software systems are so commonplace in the world of

1.1 Advantages

The owner of a computer system once asked me what the impact would be if he decided
to replace his system with that of a different manufacturer. Much to his chagrin, my
answer implied bad news. This problem is not atypical, and it is useful to introduce one
of the most favorable arguments for interpreters: case of migration.

In Figure 1.1, the location of the interpreter between the application programs
and the computer implies an insulation function. The physical placement of an inter-
preter between the programs and the processor can, in fact, result in insulation. In the
case of the system owner mentioned above, all of his application programs had been
written in an assembler language. Assemblers are usually designed such that for a
given source program statement, a single machine-language object code is generated.
The output from the assembly process is machine code, and this restricts the use of that
code to a processor that can properly execute it. The portent for users contemplating
switching “‘engines” is the possibility of having to scrap and rewrite their entire pro-
gram library, which may have evolved over a long period of time and at considerable
expense in labor and dollars.

2

WHY INTERPRETERS?

PROGRAMS

INTERPRETER

COMPUTER

Figure 1.1 An interpreter can function to insulate programs from hardware changes.

Technological advances by the computer industry have generated this dilemma
with such recurring frequency that many methods have evolved to make the problems
of migration less severe. These solutions involve compromise, however, and are there-
fore discussed further in the section dealing with alternatives.

System architectures based on the use of interpreters makes it possible to
change the processor with virtually no impact on the users of the system. But to exploit
fully this switching capability requires that all aspects of the original implementation be
biased in favor of interpretive schemes. In this instance, the languages used for applica-
tion programming must be oriented to produce an object code that is not sensitive to a
particular computer’s machine structure. This is achieved through the use of assem-
blers and compilers that produce as output a pseudo-object code.

The advantage of interpreters stems from the use of an artificial object code and
strings of instructions written in machine language that translate their meaning during
execution. It is necessary, however, that the interpreter program itself be written in the
native machine code of the using computer. However, only a single native language
program is required, permitting the use of all programs whose artificial object code
agrees with the structure expected as input by the interpreter.

ftis far less costly to develop a single interpreter than to rewrite entire libraries of
programs. This has long been recognized by the manufacturers of data processing
systems, who frequently employ interpretive methods to their own benefit.

The vendors of many systems on the market today offer various types of software
products in conjunction with their hardware. The leaders in the computer industry offer
complete data processing systems, consisting not only of the hardware but of system
software and application program product sets as well. Even those companies special-
izing in smaller systems or in primarily the hardware products offer such software as
language compilers and common utility programs.

