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Foreword

From the 1st to the 13th of September 1980, the Department of
Mathematics of the National Institute for Scientific and Technical Cre-
ation organized an International Conference on Operator Algebras and
Group Representations held in Néptun on the Romanian Black Sea
L ations,

Coast.

The research contracts between the Mathematics Department of
INCREST and the National Council for Science and Technology con-
stituted the generous framework which made possible the organization
of this conference. The conference also benefited from the cooperation
of the Romanian Academy and of the Mathematics Department of the
University of Bucharest.

The conference was attended by a large number of mathematicians
coming from both fields involved, which, in our opinion, confirms the
interest of specialists in operator algebras and group representations in
having joint meetings. We believe that this was the main source of the
success of the conference.

These two volumes contain texts of invited addresses as well as con-
tributions of participants accepted on the basis of referees’ reports.

Head of Mathematics Department of INCREST: Zoia Ceausescu

Organizers: Grigore Arsene, Serban Stritild, Andrei Verona and Dan
Voiculescu
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Factorization in L'(G) and the
Plancherel theorem for
non-unimodular Lie groups

J. F. Aarnes

1. Introduction

In the last decade a considerable amount of work has been done concern-
ing the establishment of Plancherel theorems for non-unimodular groups,
and the actual computation of the Plancherel measures for specific Lie
groups (cf. the papers of Kleppner and Lipsman [11], [12], Duflo and
Moore [7], Keene, Lipsman and Wolf [10], Lipsman and Wolf [13],
Moore [14], Penney [15], Pukanszky [17], Tatsuuma [18] and others). The
main result of the present paper, Theorem 5.1, is a sharpened version of
the Plancherel theorem which appeared in [13] for type I Lie groups.
More specifically we show that it is possible to choose a finite positive
measure on G and a semi-invariant operator D of weight A™"? in L*(G)
which is positive, self-adjoint, invertible and associated with ®R(G), the
right von Neumann algebra of G, such that Dom D 2 CJ(G) and that D
enters into the Plancherel formulas together with the chosen measure. In
turn this enables us to establish the validity of the formulas for functions
belonging to CZ(G) (and even larger spaces which are dense in L%(G)).
We also show that any operator D with the properties above is necessar-
ily given by a distribution w (i.e. De = ¢ * u) and that wu is the distribu-
tional derivative of an L>-function. Our methods are quite different from
those of [7], [11] and [13] and rely heavily on elliptic regularity theory for
differential operators. One of our main tools is the factorization result
which appears in Theorem 3.1. Roughly it says that there is a fixed
function & € L'(G)NL*(G) such that any function f in LF(G) which is
sufficiently differentiable may be written as a convolution product f=
& * f', where f'e LF(G). The paper is organized as follows. Section 2
contains preliminary material and introduces certain spaces &, < L*(G)
which plays an important role in the later parts of the paper. Section 3
contains the factorization results and an outline of the proofs. Section 4 is
devoted to a discussion of the relationship between semi-invariant

1



2 J. F. AARNES

operators, intertwining forms and distributions. No proofs are given here.
In the final Section 5 we present our version of the global Plancherel
theorem for Lie groups of type I together with a sketch of its proof.
We adopt the following conventions. Integration on G will be with
respect to a fixed left Haar-measure. The modular function A is given by

[ om0 dy =26 [ 1) ay.
G

We define f*(x)=f(x~") A(x)7%, fi(x) =f(x ") A(x)""? and f(x) = f*(x). If
w is a distribution we put (i, ¢)={u, ¢) and (X, ¢)={u, ¢); ¢ € C(G).

2. The spaces ¥, (1=p<x)

Let G be a Lie group which is countable at infinity. Let g denote its Lie
algebra and let 4 be the complexification of the universal enveloping
algebra of g. Let D,(G) (resp. D,(G)) denote the algebra of right (resp.
left) invariant differential operators on G. If X eg we also let X denote
the corresponding right invariant vector-field on G, while X denotes the
corresponding left invariant vector-field. Explicitly, for fe C*(G), X eg:

(X)) = lim + {f(exp (~X)x) ~ F (),

(RF)(x) = lim {7 (x exp £X)— ().

Let X,,...,X,; be any basis for g, and let a=(a,,...,a); o €N,
i=1,...,d be any multi-index. Elements of the form X* = X¢:--- X
(resp. X« = X% -+ X%) will then constitute a basis for D,(G) (resp.
D,(G)). Accordingly, if D is any element in ¢ we let D (resp. D) denote
the corresponding element in D,(G) (resp. D,(G)).

Let D,(G) denote the algebra of differential operators on G generated
by D,(G) and D,(G). Since all elements in D,(G) commute with all
elements in D,(G) we have

D.(G)=[RL:R e D,(G), L € D,(G)].

We now choose, once and for all, a left Haar-measure on G and let
L?(G) (1=p<«) have the standard meaning with respect to this
measure.

2.1. Definition. The space &, is given as all functions f e C*(G) such
that Mfe L¥(G) for all Me D4(G). For each Me D.(G) we define
lfllne = IMFll, (fe<f,) and equip &, with the topology derived from the
family of seminorms {||-||r; M€ D«(G)}.



FACTORIZATION IN L*(G) 3

Our first objective is to give an alternative description of the space &,
and its topology. The left and right regular representation of G in L*(G)
are given by

[ ()fIy) =f(x7"y),
[pp () f1(y) = f(yx) A(x)""

(fe L?(G), x, y<€ G). The representation o, of GXG in L?(G) is then
given by o, (x, y) = A, (x)p,(¥), x, y € G. A, p, and o, are continuous and
norm-preserving representations, unitary if p=2. For any representation
v of G let C*(y) denote the space of differentiable vectors for y. From
Goodman’s result [8], Theorem 1.1, it easily follows that C%(o,)=
C=(A,) N C=(p,). For any representation y of G we also denote by v its
infinitesimal form, i.e. the representation of the Lie algebra and given by

YX0E =2 y(exp X8l -0

(Xeg, £€C™(y)). C™(y) is a common dense domain for the operators
v(X) and vy has an extension to a representation of ¢ on C*(y), which
again is denoted by . Now, by Poulsen’s results [16], p. 114, we have the
following characterizations of C”(A,) and C*(p,):

C>(A,) ={fe C*(G): DfeL*(G), De %},
C=(p,) ={fe C™(G): EfeL?(G),Ec 9}.

The topology of C™=(A,) (resp. C~(p,)) is given by the family of seminorms
|\Dfll, (resp. |[Dfl,), D € %, under which both spaces are complete, locally
convex and metrizable, i.e. they are Fréchet spaces.

By a slight variation of Poulsen’s arguments (cf. [16], Lemmas 5.1 and
5.2) we get the following Sobolev lemma.

2.2. Lemma. Let d=dim G and let s be an integer satisfying s> d/p
(1=p <x). For each compact neighbourhood of the identity e € G there is a
positive constant C such that for any x € G:

@) |f AP (0)|=C Liaj=s G0 X F ()" dy}®  for all feC*(),),
(ii) |G| =C Ziai=s Jux |XFWI° dy}'”  for all feC(p,).

For f<L™(G) we put f4(x) = f(x~") A", Then [f4], = fl,, and f*4 = .
For any differential operator M we now define M*f = (Mf*)* (f e C*(G)).
Then M — M* is an algebra isomorphism of D,(G) onto D,(G) and vice
versa. We have M**=M and M — M* is an automorphism of D4(G).
The map f— f* is a linear topological isomorphism of C=(A,) onto

C*(pp)-



4 J. F. AARNES

On the basis of the results above it is now a fairly straightforward
matter to show the following:

2.3. Proposition. o, is a Fréchet space and coincides with C™(a,).
The elements of o, are bounded and vanish at infinity. f — f* is a linear
topological isomorphism of s, onto itself. s, is invariant under left and
right translations (which are continuous, even differentiable operations). If
fed,, ge A, then f x ge A, and the map (f, g) — f * g is jointly continu-
ous of &, X A, into A, i.e. A, is a continuous left d;-module. In particular
s, is an involutive Fréchet algebra under the usual involution f — f*. If
p =q we have continuous dense imbeddings

C=(G) - o, —> s, — L(G).

In some sense ¥, is the largest space of differentiable functions in L*(G)
it is reasonable to consider. Let us say that a locally convex space & is an
A-space of type p if the following conditions are satisfied:

(i) F<LP(G)NC=(G) and the injection of % into" LP(G) is
continuous.

(i) % is invariant under D4(G) and each M € D,(G) is continuous on
Z.

It is then easily seen that if % is an &{-space of type p then ¥ < &, and
the injection is continuous. Before we turn to applications of this we offer
one more definition. Let us say that a distribution w is strongly tempered if
w is continuous on C;(G) with respect to the relative topology of &,.

2.4. Proposition. Let p be a distribution of positive type on G. Then p
is strongly tempered.

Proof. By Theorem 3.1 of [2] there exist a continuous function f of
positive type on G and an element M € D,(G) such that u = Mf. Hence,
if € C2(G):

K, @) = Kf, M) =f(e)|Mel|,

which proves the assertion.

2.5. Corollary. Suppose G is semisimple and that w is a distribution of
positive type on G. Then p is tempered in the sense of Harish-Chandra (cf.
[9).

Proof. €, is an &-space of type 1.

This result has also been obtained by Barker [4]. Later on in this paper
we shall need still another characterization of the topology of &, which



