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Editorial Policy

for the publication of monographs

In what follows all references to monographs, are applicable also to multiauthorship
volumes such as seminar notes.

§ 1. Lecture Notes aim to report new developments - quickly, informally, and at a high
level. Monograph manuscripts should be reasonably self-contained and rounded off.
Thus they may, and often will, present not only results of the author but also related work
by other people. Furthermore, the manuscripts should provide sufficient motivation,
examples and applications. This clearly distinguishes Lecture Notes manuscripts from
journal articles which normally are very concise. Articles intended for a journal but too
long to be accepted by most journals, usually do not have this “lecture notes” character.
For similar reasons it is unusual for Ph. D. theses to be accepted for the Lecture Notes
series.

§ 2. Manuscripts or plans for Lecture Notes volumes should be submitted (preferably in
duplicate) either to one of the series editors or to Springer- Verlag, Heidelberg . These
proposals are then refereed. A final decision concerning publication can only be made
on the basis of the complete manuscript, but a preliminary decision can often be based
on partial information: a fairly detailed outline describing the planned contents of each
chapter, and an indication of the estimated length, a bibliography, and one or two sample
chapters - or a first draft of the manuscript. The editors will try to make the preliminary
decision as definite as they can on the basis of the available information.

§ 3. Final manuscripts should be in English. They should contain at least 100 pages of

scientific text and should include

- a table of contents;

- an informative introduction, perhaps with some historical remarks: it should be
accessible to a reader not particularly familiar with the topic treated;

- a subject index: as a rule this is genuinely helpful for the reader.

Further remarks and relevant addresses at the back of this book.
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Preface

Watching the cyclic motion of the planets around the sun, the seasons on earth, our
biological day and night rythm, the periodicity of life itself (to be born, live and die)
are only a few examples showing that we are embedded in and surrounded by cyclic
phenomena. In fact, periodic solutions of mathematical models of physical systems
arise precisely because we live in a cyclic (or = ~rlv so) world.

In studying the extensive literature on almost periodic solutions of
non-linear ODE’s, I think the first questio.. z to mind is why there should
be another text on this topic. My reasons for w  ; are multiple. I suppose anyone
who has ever studied the theory of non-linear  :ations was surprised to discover
motion readily discernible by us, the periodi tion, is so difficult to investigate
analytically despite highly developed math- ' tools; and in most cases there is
no analytical access at all. Thereisalar, . -  of mathematicans and scientists

who developed analytical tools for the investig. >n of periodic solutions of non-
linear ODE’s; indeed, the field is nearly saturated. Hence, the probability is very
low of making serious progress in developing further analytical methods. However,
the numerical treatment of ODE’s reached a very high level in the last two decades,
and it seems reasonable to apply and to tailor numerical algorithms for the purpose
of computation and investigation of periodic solutions. Furthermore, the bifurcation
behavior of periodic “modes”, due to varying parameters of a dynamical system, was
found to be the most important mechanism to explain and to investigate transition
into “chaos”. Bifurcation of cyclic motions is caused by destabilization and therefore
computation, stability and bifurcation analyses of periodic solutions are elementary
steps in gaining essential information about a non-linear dynamical system.

Although periodic motions are related to many applications, most of the literature
about this topic involves a very abstract mathematical framework. My intention
was to connect mathematical framework and applications. The mathematical tools
I employ, are based on modern applied mathematics and numerical analysis. Since
this book is based primarily on work undertaken during my research activities at
“Institut B fiir Mechanik, TU Miinchen”, I was mainly concerned with technical
problems.

Technical problems lead in many cases to mathematical descriptions which involve
dicontinuities with respect to the state space variables of the vector field. Aside
from some trivial exceptions, periodic solutions of dynamical systems with disconti-
nuities have never really been closely investigated, either in application or in theorry.
Therefore I found it useful to investigate these systems with same intensity in the
form of differentiable dynamical systems.

[ would like to mention that this book would never have been completed in this
form if the director of the Institut B fir Mechanik, Prof. Dr.-Ing. F. Pfeiffer had
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not provided his interest and support throughout the whole time of my stay. Par-
ticularly, his liberal attitude made it possible to investigate interdisciplinary topics
like the ones discussed here. Furthermore, I am thankful for the influence of his style
of research which encouraged and motivated me constantly. I also wish to thank
Prof. Dr. rer. nat. R. Bulirsch for reviewing the manuscript and for his support in
connecting modern applied mathematics with engineering problems. I would like
to express my special thanks to Prof. Dr. rer. nat. P. Rentrop for his useful and
constructive suggestions on the treatment of numerical problems. Regarding the
English version I thank Prof. Dr. Dr. hc. mult. G. Leitmann for his suggestions and
influence during my stay at UC Berkeley in improving the readability of this text.
In addition, my thanks are due to all of my collegues who supported the work in
some sense, in particular Dr.-Ing. habil. H. Bremer, Dr.-Ing. K. Karagiannis, Dipl.-
Ing. K. Richter and Dipl.-Ing. A. Kunert who read the manuscript carefully. Last
but not least it is a pleasure for me to mention my appreciation for the excellent
work of Monika Béhnisch who typed the manuscript and of Monika Rotenburg who
reviewed the English version of the manuscript.

Berkeley, March 1991 Eduard Reithmeier
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1 Introduction

denn das reine
Chaos ist wvollkommen
uninteressant.
W. Heisenberg !

1.1 Motivation and objective

The determination and investigation of singular points and periodic solutions of
non-linear vibrating systems is of theoretical interest as well as of technical im-
portance. The theoretical interest stems from the convergence of many demanding
mathematical fields such as the theory of fixed points and singularities, the theory
of non-linear algebraic equations or the theory of ODE’s. The technical relevance is
shown in several points: limit cycles occur in numerous areas of application and —
because of their structural invariant properties — they play an important role in the
behavior of the non-linear vibrating system. Last but not least, the bifurcation of a
limit cycle is one of the main reasons for the genesis of the irregular behavior of the
system.

The dynamics of machinery is one of the main areas of application. Belts and
chains for drive and control, for instance, rotate in a stable and continuous way
if the number of revolutions is low. By increasing the speed the motion loses its
stability and a periodic vibration will result. The same effect occurs in railway
vehicle systems that have a stable straight-forward run at low speeds. If the vehicle
surpasses a certain velocity, a limit cycle motion will result. This phenomen is not
restricted to differentiable systems. Systems which are discontinuous with respect
to state space variables also show this behavior. Examples for this case are damping
elements with dry friction which are implemented between the blades of a turbine. If
the number of revolutions is low, the damping elements lock. With increasing speed,
however, a limit cycle vibration occurs. Another example with discontinuities in the
state space are non-loaded gear wheel sets in multistage gear boxes. By increasing
the speed or the amplitude of excitation or the damping, which is caused by oil, the
vibration behavior is characterized by a series of bifurcations of periodic solutions.

A further interesting area of application is a well-known effect: amplifiers or micro-
phones begin to make a whistling sound if the feedback is sufficiently high. This
sound is equivalent to a limit cycle motion. Furthermore, many applications from
other areas such as biology, laseroptics, quantuum-mechanics or celestial-mechanics
show the occurance of limit cycle vibrations.

Limit cycle motions have been a well-known phenomen of the non-linear vibration

theory for many years [POINCARE 1912], [HOPF 1942), [MAGNUS 1955]. The

IWerner Heisenberg: Schritte uber Grenzen. Serie Piper, vol. 336, p.236.



4 1 INTRODUCTION

systems are mainly investigated by approximation theory concerning this aspect. In
most cases applications have been restricted to systems with one degree of freedom.
Moreover, these systems have been investigated without discontinuities.

Hence, the targets of this book are:

1. to develop techniques or to modify existing methods to compute fixed points
and periodic solutions of non-linear vibrating systems,

2. to determine criteria and resulting methods which can be used to investigate
the stability- and bifurcation behavior of the numerically computed periodic
solutions,

3. to obtain a connection between the periodic solutions and the global behavior
of the system from the theory of normal forms of POINCARE and SIEGEL,

and to acquire knowledge of the stability- and bifurcation behavior.

The contents of this book are divided in two main chapters: the first part is dealing
with differentiable systems having no discontinuities with respect to the state space
variables (chapter 2) and the second part is dealing with differentiable systems with
a finite number of discontinuities (chapter 3). In both chapters the main emphasis
of application lies on dynamical systems.

From the mathematical point of view fixed points are also periodic solutions, na-
mely the trivial constant solutions with respect to time. On the other hand, periodic
solutions are fixed points in a suitable POINCARE-section in the phase space. The-
refore, it is best to begin the investigations with the classification of the fixed points
or the singularities, respectively. There is an immediate connection between the sin-
gularities and the theory of normal forms of POINCARE and SIEGEL. Furthermore,
the theory of normal forms is appropriate to create connections between the stability
and the bifurcation of singularities and the diffeomorphic transformation of the non-
linear system into the system linearized around the singularity. For these reasons in
chapter 2.3 the essential parts of the theory of normal forms will be presented. In
particular, this theory will be adapted to dynamical systems. Chapter 2.4 deals with
practical aspects of classifying singularities. The classification of these singularities
is demonstrated in a series of examples.

HAMILTONian systems belong to dynamical systems which have a great variety
of mathematical structures. These systems are neither dissipative nor internally or
externally excited. This is the reason why HAMILTONian systems play a special
role and have to be treated in a separate way, which is done in chapter 2.5. As an
example for HAMILTONian systems, the double pendulum is investigated. For this
example in chapter 2.5.4 all periodic solutions will be computed, which are necessary
to explain the irregular behavior of such systems in certain energy intervals (cf.
chapter 2.8.4).

Dynamical systems which are dissipative and excited as well have less mathematical
structure, but they often occur in technical problems. In such systems the limit
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cycle motion is dominant. Methods (such as the multiple shooting method) for
computing limit cycles can be found in chapter 2.6. The efficiency of the methods
will be demonstrated by a railway vehicle system with four degrees of freedom.

In many areas of application it is important to vary the system parameters to obtain
periodic solutions with additional properties. One possibility is to construct a peri-
odic solution with a minimal time of period or maximal stability. Another example
is the so-called “synchronisation”. By this method an excitable vibrating system
will be adjusted to the frequency of a harmonic outside excitation. In chapter 2.7 a
numerical algorithm, consisting of the HAMILTONian theory of optimization and
the multiple shooting method, will be constructed to compute periodic solutions for
this problem. The algorithm will be applied to the double pendulum and the railway
vehicle system. Furthermore, a connection between the numerical computation of
bifurcation points and this algorithm can be established.

Chapter 2.8 deals with the stability and bifurcation of periodic solutions. It will be
shown that each solution embedded in a field of asymptotic stable solutions must
converge to a limit function. This limit function is either a fixed point or a limit
cycle. Two necessary conditions will be obtained for the bifurcation of periodic
solutions. As above, the results are applied to the model of a railway vehicle system
and double pendulum.

All results of chapter 2 can be transferred with some modifications to differentiable
systems with discontinuities. Therefore, chapter 3 is divided into the same subjects
as chapter 2. However, the treatment of the corresponding parts is shorter. For the
application of the methods, a one-staged gear wheel set and an excitation model
with dry friction will be taken into consideration.
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1.2 Survey of literature
1.2.1 Existence of periodic solutions

The interest in periodic solutions of non-linear vibrating systems goes back to the
beginning of this century. Already [POINCARE 1912] investigated periodic soluti-
ons of non-linear dynamical systems. In connection with the restricted three-body-
problem he studied fixed points of area-preserving one-to-one transformations of
simply connected areas on the plane. However, he could not prove his well known
“last geometric problem” himself. BIRKHOFF solved this problem some years later
and extended it to an arbitrary dimension of the state space. Based on this theo-
rem, [BIRKHOFF, LEWIS 1933] have proved the existence of an infinite number of
periodic solutions of a conservative system in the neighborhood of a known periodic
solution, which could also be a fixed point of the “general stable type”.

An interesting step was taken by [SEIFFERT 1945] twelve years later. He showed,
that for each energy level of a dynamical system, described by the LAGRANGEian
equations (Z—T). — % + Z—V = 0, at least one periodic solution exists. In contrast to
the theorem of BIRKHO}?F, his proof was based purely on the tools of differential
geometry. He was looking for closed geodesics on a RIEMANNian manifold with the
metric d s? := (H—V)dq"M dq, where M is the mass matrix, H the HAMILTONian

function and V' the potential function of the system.

Parallel to these results, [HOPF 1942] proved a theorem which is very useful for
technical problems. This theorem supplies a sufficient criterion for the existence
of limit cycles in the neighborhood of a singularity of a dissipative and excited
non-linear vibrating system.

In the following years mainly [SIEGEL 1954], [SIEGEL 1971] and [MOSER 1953]
were occupied with a series of extensions of the theorem of BIRKHOFF and the
so-called “resonant case”.

Later in the 1960’s and '70’s many authors such as [HARRIS 1966], [BERGER 1971],
[GORDON 1971], [RABINOWITZ 1978a], [EKELAND 1979], [AMANN, ZEHN-
DER 1980] etc., dealt with periodic solutions of HAMILTONian systems. For spe-
cial classes of these systems they obtained theorems about the existence of periodic
solutions. The main idea of these proofs was to transform the problem of finding
periodic solution into a minimax problem of the calculus of variation. By doing
this, it turns out that for each periodic solution a critical point of the corresponding
variational problem exists.

Other approaches — coming from the differential topology — were made by [MARKUS
1960], [FULLER 1967] and [WEINSTEIN 1973]. Analogously to the topological
index in the theory of fixed points, FULLER defined an index for periodic solutions
of autonomous systems and applied it to prove the existence of periodic solutions of
HAMILTONian systems. In 1973 WEINSTEIN showed that on each energy surface
of a HAMILTONian system z = J- DH (z) (J symplectic) at least f periodic solutions
exist which are seperated. The energy surface lies in a certain neighborhood of a
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singularity zo € IR% and furthermore the HESSE-matrix D?H(z,) must be positive
definite. [MOSER 1976] extended this result to arbitrary systems z = f(z) which
have a first integral.

A survey of the existence-statements of periodic solutions of non-linear dynamical
systems may be found in [YOSHIZAWA 1975], [RABINOWITZ 1982] and [DUIS-
TERMAAT 1984] for instance.

1.2.2 Numerical computation of periodic solutions

An analytical expression of a periodic solution is mostly restricted to trivial cases.
Therefore, up to the 60’s the investigations were concentrated on the existence or
uniqueness, or on the approximation methods (cf. [MAGNUS 1955]). Since POIN-
CARE published his results periodic solutions have mainly been used in the field of
pure mathematics. Also the early numerical treatment by the analogue-computer
for the DUFFING-oscillator, the VAN DER POL-oscillator or other examples with
one degree of freedom, did not change the situation.

A new era has started in the 80’s: numerical algorithms were employed to com-
pute and investigate periodic solutions. [SEYDEL 1983] as well as [HOLODNIOK,
KUBICEK 1984] used the multiple shooting method developed by [BULIRSCH,
STOER, DEUFLHARD 1977]. The idea is based on finding the periodic solution
by solving a boundary value problem with an unknown time of period. Because of
the non-uniqueness of the periodic solutions in the autonomous case, it is proble-
matic to formulate the boundary-value problem. Therefore — based on the multiple
shooting method - [DEUFLHARD 1984] generated a modified GAUSS-NEWTON-
technique to get rid of this problem.

Another interesting proposal — based on the index theory of POINCARE-BENDI-
XON - came from [HSU 1980a,b]. The idea is to generate a POINCARE—mapping
P:Yy =Y (X CTM, codimy = 1) in the state space TM. Then the periodic
solution is equivalent to a fixed point of P. Now, ifa JORDAN-curve' : "1 —» ¥
is continuously deformed, the index of P — idz changes from +1 to —1 or vice versa
if the curve I" passes a fixed point of P.

1.2.3 Bifurcation and stability of periodic solutions

The investigation of stability and bifurcation requires the periodic solutions either
in analytical or numerical form. The first investigations in this area were of pure
analytical nature. Especially the criteria of [HOPF 1955] should be mentioned. They
suppply a condition for the bifurcation from a fixed point to a periodic solution.

Among others, analytical investigations were made mainly by [MEYER 1970}, [MEY-
ER 1971], [MIL’'SHTEIN 1977], [BOTTKOL 1977] and [MULLER 1981]. MEYER
investigated the bifurcation of periodic points (fixed points) of a vector field on a
two-dimensional manifold which depends on one parameter. Based on these results,
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he classified the periodic points. Furthermore, he analysed the stability properties
of each of these classes by the invariant curve-theorem of MOSER. By doing this he
used stability criteria based on LIAPUNOV-functions. Also based on LIAPUNOV-
functions, however in connection with optimization techniques, MIL’SHTEIN ob-
tains criteria for the asymptotic stability of periodic solutions. MULLER modifies
these stability theorems to apply them to limit cycles which are computed approxi-
matively. However, he restricted his investigations to point-symmetric vector fields.
BOTTKOL deals with vector fields, for which a parameter-dependent submanifold
exists in the state space. His problem formulation concerns structural stability.
That means, he investigates a vector field in the “neighborhood” and looks for a
neighboring parameter-dependent submanifold of periodic solutions.

The investigation of bifurcation and stability of periodic solutions, which are nume-
rically computed, can especially be found in [SEYDEL 1988].

1.2.4 Periodic solutions of dynamical systems with discontinuities

Already [SENATOR 1969] investigated stability and bifurcation aspects of periodic
solutions with a one degree of freedom system subjected to impacts. Similar exam-
ples can be found in [HSU 1977] and [HARTOG 1931]. Since there is an analytical
solution of these examples, the investigation is mainly focused on the special situa-
tion.

In the last few years, the number of authors dealing with numerical analysis of non-
linear systems with discontinuities has risen. Here particularly [HOLMES 1982],
[SHAW 1985], [HEIMANN, BAJAJ, SHERMAN 1988], [PFEIFFER 1988a,b], [KA-
RAGIANNIS 1989] and [MEIJAARD, DE PATER 1989] have to be mentioned. In
these works the mathematical modelling, numerical computation and simulation
are considered. Some authors such as HEIMANN et al. and SHAW also discuss the
stability and bifurcation behavior of periodic solutions with discontinuities.



2 Differentiable dynamical systems

“The study of these cyclic or
periodic vibrations is the study
of vibration and it is one of
the most important aspects of
dynamics.”

R.F. Steidel 2

2.1 Preliminary remarks

The frame for the investigation — that is the numerical computation, stability and
bifurcation - of singularities and periodic solutions are differentiable vector fields

f*TMxUxPxI—->TM (2.1)

whose trajectory ®¢ : [0,00 [ — T'M with the initial point & € T'M is given for each
time ¢ by the unique initial value problem

x(t) = £ (x(t), u(t), p, t) ,
(2.2)

In this formulation

M : is the configuration space (differentiable manifold,
locally isomorphic to IRY), dim M = f € N,
f is the number of degrees of freedom of the system,

™ : = M x IR/ is the state space,

UcCR" : is the range of values of the control u, which is mostly
obtained by an optimization strategy or a control design,

P C R* : 1s the space of parameters, which can be varied in the system,

ICR : 1is the range of time of excitation, which is mostly
given by an explicit time function.

2From [STEIDEL 1989)], page 40.



10 2 DIFFERENTIABLE SYSTEMS

The vector field £* is assumed to be sufficiently differentiable. The partial differen-
tiability is related to the variables x,u, p and t.

\Y%
Example 2.1: Railway vehicle system.
Fig. 2.1 shows a simple dynamical model of a wheel set of a railway-vehicle system.

The (rigid) wheel set (double cone with cone-angle §) is elastically mounted in the
undercarriage. The number of degrees of freedom is 6.

Fig. 2.1: Wheel set modelled as a double conus rolling on rectangular shaped rail

To investigate the dynamical behavior of the wheel set we assume that the under-
carriage runs straight forward at a constant velocity v. The feedback from the wheel
set to the undercarriage is neglected because of the higher mass of the undercarriage.

The position of the wheel set (with respect to an inertial frame [ := (ei,ei,eg),
which is moved at a constant velocity vy of the wheel suspension) is described by
the coordinates x,y and z as well as by the cardanian angles ¢, # and . Hence, the

configuration space is given by

M =TR® x SO(3) .



