

Excursions in Modern Mathematics

Peter Tannenbaum Robert Arnold

CALIFORNIA STATE UNIVERSITY—FRESNO

Library of Congress Cataloging-in-Publication Data

Tannenbaum, Peter (date)

Excursions in modern mathematics / Peter Tannenbaum, Robert Arnold.--3rd ed.

p. cm.

Includes bibliographical references and index.

ISBN 0-13-598335-5

1. Mathematics. I. Arnold, Robert, mathematician. II. Title.

OA36.T35 1997

519--dc21

97-17313

CIP

Editorial Director: Tim Bozik Editor-in-Chief: Jerome Grant Acquisitions Editor: Sally Denlow

Production Editors: Richard DeLorenzo and Barbara Mack

Managing Editor: Linda Behrens

Executive Managing Editor: Kathleen Schiaparelli

Assistant Vice President of Production and Manufacturing: David W. Riccardi

Marketing Manager: John Tweeddale Creative Director: Paula Maylahn

Art Director: Sheree Goodman Design, Inc.

Interior Design: Brand X Studios

Cover Art and Design: Hothouse Design, Inc.

Art Manager: Gus Vibal

Photo Editor: Lori Morris-Nantz

Photo Research: Kim Moss and Teri Stratford

Manufacturing Buyer: Alan Fischer Manufacturing Manager: Trudy Pisciotti

Supplements Editor/Editorial Assistant: April Thrower

© 1998, 1995, 1992 by Prentice-Hall, Inc. Simon & Schuster/A Viacom Company Upper Saddle River, New Jersey 07458

All rights reserved. No part of this book may be reproduced, in any form or by any means, without permission in writing from the publisher.

Photo credits appear on page 587, which constitutes a continuation of the copyright page.

Printed in the United States of America 10 9 8 7 6 5 4 3 2 1

12BN 0-13-598335-5

Prentice-Hall International (UK) Limited, London

Prentice-Hall of Australia Pty. Limited, Sydney

Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana S.A., Mexico City

Prentice-Hall of India Private Limited, New Delhi

Prentice-Hall of Japan, Inc., Tokyo

Simon & Schuster Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

Preface

To most outsiders, modern mathematics is unknown territory. Its borders are protected by dense thickets of technical terms; its landscapes are a mass of indecipherable equations and incomprehensible concepts. Few realize that the world of modern mathematics is rich with vivid images and provocative ideas.

Ivars Peterson, The Mathematical Tourist

Excursions in Modern Mathematics is, as we hope the name might suggest, a collection of "trips" into that vast and alien frontier that many people perceive mathematics to be. While the purpose of this book is quite conventional--it is intended to serve as a textbook for a college-level liberal arts mathematics course--its contents are not. We have made a concerted effort to introduce the reader to a view of mathematics entirely different from the traditional algebra-geometry-trigonometry-finite math curriculum which so many people have learned to dread, fear, and occasionally abhor. The notion that general education mathematics must be dull, unrelated to the real world, highly technical, and deal mostly with concepts that are historically ancient is totally unfounded.

The excursions in this book represent a collection of topics chosen to meet a few simple criteria.

Applicability.

The connection between the mathematics presented here and down-to-earth, concrete real-life problems is direct and immediate. The often heard question, "What is this stuff good for?" is a legitimate one and deserves to be met head on. The often heard answer, "Well, you need to learn the material in Math 101 so that you can understand Math 102 which you will need to know if you plan to take Math 201 which will teach you the real applications," is less than persuasive and in many cases reinforces students' convictions that mathematics is remote, labyrinthine, and ultimately useless to them.

Accessibility.

Interesting mathematics need not always be highly technical and built on layers upon layers of concepts. As a general rule, the choice of topics in this book is such that a heavy mathematical infrastructure is not needed: We have found Intermediate Algebra to be an appropriate and sufficient prerequisite. (In the few instances in which more advanced concepts are unavoidable we have endeavored to provide enough background to make the material self-contained.) A word of caution—this does not mean that the material is easy! In mathematics, as in many other walks of life, simple and straightforward is not synonymous with easy and superficial.

Age.

Much of the mathematics in this book has been discovered in this century, some as recently as 20 years ago. Modern mathematical discoveries do not have to be only within the grasp of experts.

Aesthetics.

The notion that there is such a thing as beauty in mathematics is surprising to most casual observers. There is an important aesthetic component in mathematics and, just as in art and music (which mathematics very much resembles), it often surfaces in the simplest ideas. A <u>fundamental</u> objective of this book is to develop an appreciation for the aesthetic elements of mathematics. It is not necessary that the reader love everything in the book—it is sufficient that he or she find one topic about which they can say, "I really enjoyed learning this stuff!" We believe that anyone coming in with an <u>open mind</u> almost certainly will.

Outline

The material in the book is divided into four independent parts. Each of these parts in turn contains four chapters dealing with interrelated topics.

Part 1

(Chapters 1 through 4). The Mathematics of Social Choice. This part deas with mathematical applications in social science. How do groups make decisions? How are elections decided? What is power? How can power be measured? What is fairness? How are competing claims on property resolved in a fair and equitable way?

Part 2

(Chapters 5 through 8). Management Science. This part deals with methods for solving problems involving the organization and management of complex activities—that is, activities involving either a large number of steps and/or a large number of variables (routing the delivery of packages, landing a spaceship on Mars, organizing a banquet, scheduling classrooms at a big university, etc.). Efficiency is the name of the game in all these problems. Some limited or precious

resource (time, money, raw materials) must be managed in such a way that waste is minimized. We deal with problems of this type (consciously or unconsciously) every day of our lives.

Part 3

(Chapters 9 through 12). Growth and Symmetry. This part deals with nontraditional geometric ideas. How do sunflowers and seashells grow? How do animal populations grow? What are the symmetries of a spowflake? What is the symmetry type of a wallpaper pattern? What is the geometry of a mountain range? What kind of symmetry lies hidden in our circulatory system?

Part 4

(Chapters 13 through 16). Statistics. In one way or another, statistics affects all of our lives. Government policy, insurance rates, our health, our diet, and public opinion are all governed by statistical laws. This part deals with some of the most basic aspects of statistics. How should statistical data be collected? How is data summarized so that it is intelligible? How should statistical data be interpreted? How can we measure the inherent uncertainty built into statistical data? How can we draw meaningful conclusions from statistical information? How can we use statistical knowledge to predict patterns in future events?

Exercises

We have endeavored to write a book that is flexible enough to appeal to a wide range of readers in a variety of settings. The exercises, in particular, have been designed to convey the depth of the subject matter by addressing a broad spectrum of levels of difficulty—from the routine drill to the ultimate challenge. For convenience (but with some trepidation) we have classified them into three levels of difficulty:

Walking.

These exercises are meant to test a basic understanding of the main concepts, and they are intended to be within the capabilities of students at all levels.

2Jogging.

These are exercises that can no longer be considered as routine—either because they use basic concepts at a <u>higher level</u> of complexity, or they require slightly higher order critical thinking skills, or both.

3Running.

This is an umbrella category for problems that range from slightly unusual or slightly above average in difficulty to problems that can be a real challenge to even the most talented of students. This category also includes an occassional openended problem suitable for a project.

Teaching Extras Available with the Third Edition

The New York Times Mathematics and Statistics Supplement

selected by Peter Tannenbaum and others

Prentice Hall and the **New York Times** jointly sponsor "A Contemporary View", a collection of articles taken from the pages of the New York Times. These articles deal with mathematically significant breakthroughs or with recent news stories which illustrate the importance, relevance, and currency of mathematics in real life. The articles may be used to prompt classroom discussion, to suggest topics for term papers and research projects, or merely to show the connections between class material and the world that surrounds the student.

"A Contemporary View" is published once a year and is available exclusively through Prentice Hall. Through this program, at the instructor's request, each student will receive a free copy of this supplement. Instructors are encouraged to call their Prentice Hall representative for more information.

ABC News Videos and Accompanying Projects

edited and written by Kim Query

Segments are taken from Nightline, World News Tonight and This Week with David Brinkley covering various current events through which mathematics is used. Also includes a manual with extended group projects and discussion questions to accompany the video clips.

Prentice Hall Companion Web Page

Features Internet projects with links that complement the activities in the text, "Net Tutors" for on-line tutoring, and links to related math resources available on the Web.

http://www.prenhall.com/tannenbaum

Instructor's Manual

The Instructor's Manual contains notes and comments of a general nature, and a test bank consisting of approximately 500 multiple choice questions and worked out solutions to all exercises in the text.

ISBN: 0-13-746959-4

Student's Solutions Manual

The Student's Solutions Manual contains the solutions to the odd numbered problems in the text and other helpful hints and suggestions.

ISBN: 0-13-746967-5

Prentice Hall Custom Test (IBM and MAC)

A fully editable test generator which features an instructor's grade book and online testing.

IBM: 0-13-747123-8 MAC: 0-13-747081-9

Life on the Internet - Mathematics

Guides students and instructors through the complexity of the Internet, offering navigation strategies, practice exercises, and lists of resources. Contact your local Prentice Hall representative for the latest copy.

THE THIRD EDITION

This third edition of Excursions in Modern Mathematics retains the topics and organization of previous editions, in a more attractive and hopefully more user friendly package. Most chapters have been rewritten, and new examples and applications have been added throughout. In addition, some chapters have undergone substantive changes in organization (Chapters 5, 6, and 7), or coverage (Chapters 11, 13, 15, and 16). New topics not in previous editions are: the classification of finite shapes by their symmetry types (Chapter 11); the capture-recapture method for estimating the size of a population (Chapter 13); permutations and combinations (Chapter 15); and an introduction to statistical inference (Chapter 16).

A FINAL WORD

This book grew out of the conviction that a liberal arts mathematics course should teach students more than just a collection of facts and procedures. The ultimate purpose of this book is to instill in the reader an overall appreciation of mathematics as a discipline and an exposure to the subtlety and variety of its many facets: problems, ideas, methods, and solutions. Last, but not least, we have tried to show that mathematics can be fun.

ACKNOWLEDGMENTS

The following mathematicians reviewed previous editions of the book and made many invaluable suggestions:

Carmen Artino, College of Saint Rose; Donald Beaton, Norwich University; Margret Bos, St. Lawrence University; Thomas A. Carnevale, Shawnee State University

TERRY L. CLEVELAND, New Mexico Military Institute;

LESLIE COBAR, University of New Orleans;

Ronald Czochor, Rowan College of New Jersey;

KATHRYN E. FINK, Moorpark College; JOSEPHINE GUGLIELMI, Meredith College; WILLIAM S. HAMILTON, Community College of Rhode Island;

GLENDA HAYNIE, North Carolina State University;

HAROLD JACOBS, East Stroudsburg University;

Tom Kiley, George Mason University; Jean Krichbaum, Broome Community College;

CHRISTOPHER McCord, University of Cincinnati;

THOMAS O'BRYAN, University of Wisconsin-Milwaukee;

Daniel E. Otero, *Pennsylvania State University*;

DENNIS D. PENCE, Western University; MATTHEW PICKARD, University of Puget Sound;

LANA RHOADS, William Baptist College; DAVID E. RUSH, University of California at Riverside; KATHLEEN C. SALTER, Eastern New Mexico University;

THERESA M. SANDIFER, Southern Connecticut State University;

PAUL SCHEMBARI, East Stroudsburg University of Pennsylvania;

Connie S. Schrock, Emporia State University

WILLIAM W. SMITH, University of North Carolina at Chapel Hill;

DAVID STACY, Bellevue Community College; JOHN WATSON, Arkansas Technical

OHN WAISON, Arkansas Technica University;

TAMELA WILLETT, McHenry County College.

We would like to extend special thanks to *Professor Benoit Mandelbrot* of Yale University who read the manuscript for Chapter 12 and made several valuable suggestions. We gratefully acknowledge *Vahack Haroutunian*, *Ronald Wagoner*, *Carlos Valencia*, and L. Taylor Ullmann, all of whom made significant contributions to the exercise sets.

Contents

Preface xiii

PART 1 The Mathematics of Social Choice

1. The Mathematics of Voting: The Paradoxes of Democracy 2

Preference Ballots and Preference Schedules 4

The Plurality Method 6

The Borda Count Method 9

The Plurality-with-Elimination Method 10

The Method of Pairwise Comparisons 16

Rankings 21

Conclusion: Fairness and Arrow's Impossibility Theorem

Exercises 27

Appendix 1: Breaking Ties 34

Appendix 2: A Sampler of Elections in the Real World 36

References and Further Readings 39

2 Weighted Voting Systems: The Power Game 40

Weighted Voting Systems 42

The Banzhaf Power Index 45

Applications of the Banzhaf Power Index 51

The Shapley-Shubik Power Index 53

Applications of the Shapley-Shubik Power Index 59

Conclusion 60

Exercises 61

Appendix: Power in the Electoral College 70

References and Further Readings 71

3. Fair Division: The Slice Is Right 72

Fair-Division Problems and Fair-Division Schemes 75

Two Players: The Divider-Chooser Method 76

The Lone-Divider Method 78

The Lone-Chooser Method 81

The Last-Diminisher Method 84

The Method of Sealed Bids 89

The Method of Markers 92

Conclusion 95

Exercises 96

References and Further Readings 111

4. The Mathematics of Apportionment: Making the Rounds 112

Apportionment Problems 114

A Little Bit of U.S. History 116

The Mathematics of Apportionment: Basic Concepts 117

Hamilton's Method 119

The Quota Rule 120

The Alabama Paradox 121

More Problems with Hamilton's Method 122

Jefferson's Method 126

Jefferson's Method and The Quota Rule 128

Adams' Method 129

Webster's Method 132

Conclusion: Balinski and Young's Impossibility Theorem 133

Exercises 134

Appendix 1: The Huntington-Hill Method 141

Appendix 2: A Brief History of Apportionment in the United States 144

References and Further Readings 146

PART 2 Management Science

5. Euler Circuits: The Circuit Comes to Town 148

Routing Problems 150

Graphs 154

Graph Concepts and Terminology 156

Graph Models 158

Euler's Theorems 161

Fleury's Algorithm 164

Eulerizing Graphs 167
Conclusion 172
Exercises 173
References and Further Readings 183

6. The Traveling-Salesman Problem: Hamilton Joins the Circuit 184

Hamilton Circuits and Hamilton Paths 188
Complete Graphs 189
Traveling-Salesman Problems 192
Simple Strategies for Solving TSPs 194
The Brute-Force and Nearest-Neighbor Algorithms 197
The Repetitive Nearest-Neighbor Algorithm 202
The Cheapest-Link Algorithm 203
Conclusion 208
Exercises 210
References and Further Readings 222

7. The Mathematics of Networks: Connections! 224

Trees 226
Minimum Spanning Trees 230
Kruskal's Algorithm 230
The Shortest Distance Between Three Points 232
Shortest Networks Linking More than Three Points 238
Conclusion 243
Exercises 245
Appendix: The Soap-Bubble Solution 257
References and Further Readings 259

8 The Mathematics of Scheduling: Directed Graphs and Critical Paths 260

The Basic Elements of Scheduling 262
Directed Graphs 268
The Priority List Model for Scheduling 270
The Decreasing-Time Algorithm 277
Critical Paths 278
The Critical-Path Algorithm 282
Scheduling with Independent Tasks 284
Conclusion 287
Exercises 288
References and Further Readings 297

PART 3 Growth and Symmetry

9. Spiral Growth in Nature: Fibonacci Numbers and the Golden Ratio 300

Fibonacci Numbers 302

The Equation $x^2 = x + 1$ and the Golden Ratio 305

Gnomons 308

Gnomonic Growth 315

Conclusion 317

Exercises 318

References and Further Readings 326

10. The Mathematics of Population Growth: There Is Strength in Numbers 328

The Dynamics of Population Growth 330

The Linear Growth Model 333

The Exponential Growth Model 338

The Logistic Growth Model 345

Conclusion 350

Exercises 351

References and Further Readings 357

11. Symmetry: Mirror, Mirror, off the Wall... 358

Geometric Symmetry 360

Rigid Motions 361

Reflections 362

Rotations 364

Translations 366

Glide Reflections 366

Symmetry Revisited 367

Patterns 373

Conclusion 377

Exercises 378

Appendix: The Seventeen Wallpaper Pattern Types 388

References and Further Readings 391

12. Fractal Geometry: Fractally Speaking 392

The Koch Snowflake 394

The Sierpinski Gasket 400

The Chaos Game 402

The Twisted Sierpinski Gasket 403
Symmetry of Scale in Art and Literature 406
The Mandelbrot Set 407
Conclusion: Fractals 413
Exercises 416
References and Further Readings 421

PART 4 Statistics

13. Collecting Statistical Data: Censuses, Surveys, and Studies 424

The Population 426

Case Study 1: The 1990 U.S. Census 428

Surveys 429

Case Study 2: The 1936 Literary Digest Poll 430

Case Study 3: The 1948 Presidential Election 432

Random Sampling 434

Case Study 4: Modern Public Opinion Polls:

Stratified Samples 436

Sampling: Terminology and Key Concepts 438

Clinical Studies 440

Case Study 5: The 1954 Salk Polio Vaccine Field Trials 441

Conclusion 444

Exercises 445

References and Further Readings 451

14. Descriptive Statistics: Graphing and Summarizing Data 452

Graphical Descriptions of Data 454

Variables: Quantitative and Qualitative;

Continuous and Discrete 457

Numerical Summaries of Data 462

Measures of Spread 471

Conclusion 474

Exercises 475

References and Further Readings 483

15. Chances, Probability, and Odds: Measuring Uncertainty 484

Random Experiments and Sample Spaces 486

Counting: The Multiplication Rule 488

Permutations and Combinations 490

Probability Spaces 496
Probability Spaces with Equally Likely Outcomes 498
Odds 502
Conclusion 503
Exercises 504
References and Further Readings 509

16. Normal Distributions:

Everything Is Back to Normal (Almost) 510

Approximately Normal Distributions of Data 512

Normal Curves and Their Properties 514

Normal Curves as Models of Real-Life Data Sets 518

Normal Distributions of Random Events 519

Statistical Inference 521

Conclusion 526

Exercises 527

References and Further Readings 533

Answers to Selected Problems 535

Index 579

Photo Credits 587

