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Preface

The area of Modern Physics embraces topics that have evolved since roughly the turn of this
century. These developments can be mind-boggling, as with the effects on time predicted by

Einstein’s Special Theory of Relativity, or quite practical, like the many devices based upon semicon-
ductors, whose explanation lies in the band theory of solids.

The scope of the present book may be gauged from the Table of Contents. Each chapter consists
of a succinct presentation of the principles and “meat” of a particular subject, followed by a large
number of completely solved problems that naturally develop the subject and illustrate the principles.
It is the authors’ conviction that these solved problems are a valuable learning tool. The solved
problems have been made short and to the point, and have been ordered in terms of difficulty. They
are followed by unsolved supplementary problems, with answers, which allow the reader to check his
grasp of the material.

It has been assumed that the reader has had the standard introductory courses in general physics,
and the book is geared primarily at the sophomore or junior level, although we have also included
problems of a more advanced nature. While it will certainly serve as a supplement to any standard
Modern Physics text, this book is sufficiently comprehensive and self-contained to be used by itself to
learn the principles of Modern Physics.

We extend special thanks to David Beckwith for meticulous editing and for input that improved
the final version of the book. Any mistakes are ours, of course, and we would appreciate having these
pointed out to us. Finally, we are indebted to our families for their enormous patience with us
throughout the long preparation of this work.

RONALD GAUTREAU
WILLIAM SAVIN

New Jersey Institute of Technology
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PART I: The Special Theory of Relativity

Chapter 1
Galilean Transformations

1.1 EVENTS AND COORDINATES

We begin by considering the concept of a physical event. The event might be the striking of a
tree by a lightning bolt or the collision of two particles, and happens at a point in space and at an
instant in time. The particular event is specified by an observer by assigning to it four coordinates:
the three position coordinates x, y, z that measure the distance from the origin of a coordinate system
where the observer is located, and the time coordinate ¢ that the observer records with his clock.

Consider now two observers, O and O’, where O’ travels with a constant velocity v with respect to
O along their common x-x’ axis (Fig. 1-1). Both observers are equipped with metersticks and clocks
so that they can measure coordinates of events. Further, suppose both observers adjust their clocks
so that when they pass each other at x = x’ =0, the clocks read = =0. Any given event P will
have eight numbers associated with it, the four coordinates (x, y, z, #) assigned by O and the four
coordinates (x, ', z’, 1) assigned (to the same event) by O’.

Event P: (x, y', 2/, t')
(%, 7,2, 0)

=Y

Fig. 1-1

1.2 GALILEAN COORDINATE TRANSFORMATIONS

The relationship between the measurements (x, y, z, t) of O and the measurements (x5 0h.25 t)of
O’ for a particular event is obtained by examining Fig. 1-1:
xX=x—0ot y=y z'=1z
In addition, in classical physics it is implicitly assumed that
=t
These four equations are called the Galilean coordinate transformations.

13 GALILEAN VELOCITY TRANSFORMATIONS

In addition to the coordinates of an event, the velocity of a particle is of interest. Observers O
and O’ will describe the particle’s velocity by assigning three components to it, with (u,, u,, #,) being
the velocity components as measured by O, and (u,, u,, u;) being the velocity components as measured
by O'.
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 The relationship between (u,, u,, u,) and (u, u;, u;) is obtained from the time differentiation of the
Galilean coordinate transformations. Thus, from x’ = x — vt,

fom iR 0L B ﬂ=(d_x_) g
iy Bawnle Gl My e Wt By

Altogether, the Galilean velocity transformations are

A s ] el
u,=u, —v u, = u, u, = u,

1.4 GALILEAN ACCELERATION TRANSFORMATIONS

The acceleration of a particle is the time derivative of its velocity, i.e. a, = du,/dt, etc. To find
the Galilean acceleration transformations we differentiate the velocity transformations and use the facts
that ¢ = ¢ and v = constant to obtain

2 I 43 £
a,=a, d;=a a,=a,

Thus the measured acceleration components are the same for all observers moving with uniform
relative velocity.

1.5 INVARIANCE OF AN EQUATION

By invariance of an equation it is meant that the equation will have the same form when
determined by two observers. In classical theory it is assumed that space and time measurements of
two observers are related by the Galilean transformations. Thus, when a particular form of an
equation is determined by one observer, the Galilean transformations can be applied to this form to
determine the form for the other observer. If both forms are the same, the equation is invariant under
the Galilean transformations. See Problems 1.11 and 1.12.

Solved Problems

1.1. A passenger in a train moving at 30 m/s passes a man standing on a station platform at
t =1t =0. Twenty seconds after the train passes him, the man on the platform determines
that a bird flying along the tracks in the same direction as the train is 800 m away. What are
the coordinates of the bird as determined by the passenger?

The coordinates assigned to the bird by the man on the station platform are
(x,y,2,1)=(800m, 0, 0, 20 5)
The passenger measures the distance x’ to the bird as
x'=x—ovt=2800m — (30 m/s)(20 s) = 200 m
Therefore the bird’s coordinates as determined by the passenger are
(x',y,2,#)=(200m, 0, 0, 20 s)

12 Refer to Problem 1.1. Five seconds after making the first coordinate measurement, the man
on the platform determines that the bird is 850 m away. From these data find the velocity of
the bird (assumed constant) as determined by the man on the platform and by the passenger
on the train.

The coordinates assigned to the bird at the second position by the man on the platform are
(%2, y2, 23, ;) = (850 m, 0, 0, 25 s)
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13.

14.

1.5.

Hence, the velocity u, of the bird as measured by the man on the platform is
X2~ %1 _ 850m —800m
by=H 255s—20s

The positive sign indicates the bird is flying in the positive x-direction. The passenger finds that at the
second position the distance x5 to the bird is

x5 = x, — vt =850 m — (30 m/s)(25 s) = 100 m
Thus, (x3, y5, 23, 15) = (100 m, 0, 0, 25 s), and the velocity u; of the bird as measured by the passenger is

, %=X _ 100m—200m _ _
R T Smasa e, | RS

=+10m/s

U, =

so that, as measured by the passenger, the bird is moving in the negative x’-direction. Note that this
result is consistent with that obtained from the Galilean velocity transformation:

u,=u,—v=10m/s—30m/s= —20m/s

A sample of radioactive material, at rest in the laboratory, ¢jects two electrons in opposite
directions. One of the electrons has a speed of 0.6c and the other has a speed of 0.7c, as
measured by a laboratory observer. According to classical velocity transformations, what
will be the speed of one electron as measured from the other?

Let observer O be at rest with respect to the laboratory and let observer O’ be at rest with respect to
the particle moving with speed 0.6¢ (taken in the positive direction). Then, from the Galilean velocity
transformation,

u,=u, —v=—07c—06c=—13c

This problem demonstrates that velocities greater than the speed of light are possible with the
Galilean transformations, a result that is inconsistent with Special Relativity.

A train moving with a velocity of 60 mi/hr passes through a railroad station at 12:00.
Twenty seconds later a bolt of lightning strikes the railroad tracks one mile from the station in
the same direction that the train is moving. Find the coordinates of the lightning flash as
measured by an observer at the station and by the engineer of the train.

Both observers measure the time coordinate as

e 1hr =_L_
z_z—(zos)(———36oos) 25 br

The observer at the station measures the spatial coordinate to be x =1 mi. The spatial coordinate as
determined by the engineer of the train is

/= — e - 1 L = -2_ 1
x'=x—ot=1mi- (60 ml/hr)( 180 hr) 3 mi
A hunter on the ground fires a bullet in the northeast direction which strikes a deer 0.25 miles
from the hunter. The bullet travels with a speed of 1800 mi/hr. At the instant when the
bullet is fired, an airplane is directly over the hunter at an altitude of one mile and is traveling
due east with a velocity of 600 mi/hr. When the bullet strikes the deer, what are the

coordinates as determined by an obseyver in the airplane?

Using the Galilean transformations,

i, 025mi  _ -
=t —_———ISOOmi/hr 1.39 X 10~ * hr

x' = x — ot = (0.25 mi) cos 45° — (600 mi/hr)(1.39 X 10~* hr) = 0.094 mi
y' =y =1(0.25 mi) sin 45° = 0.177 mi
Z=z-h=0-1mi=—1mi




1.7

18.

1.9.

THE SPECIAL THEORY OF RELATIVITY [PART I

An observer, at rest with respect to the ground, observes the following collision. A particle of
mass m, = 3 kg moving with velocity ; = 4 m/s along the x-axis approaches a second particle
of mass m, =1 kg moving with velocity u, = —3 m/s along the x-axis. After a head-on
collision the ground observer finds that m, has velocity u$ = 3 m/s along the x-axis. Find
the velocity uf of m, after the collision.
initial momentum = final momentum
myuy + myu; = myuf + myus
(B kg)(4 m/s) + (1 kg)(=3 m/s) = (3 kg)ut + (1 kg)(3 m/s)
9kg m/s=(3kg)uf +3kg-m/s

Solving, u¥ =2 m/s.

A second observer, O’, who is walking with a velocity of 2 m /s relative to the ground along
the x-axis observes the collision described in Problem 1.6. What are the system momenta
before and after the collision as determined by him?

Using the Galilean velocity transformations,
uy=u;—v=4m/s—2m/s=2m/s
U =up—ov=-3m/s—2m/s=—-5m/s
uf'=uf —v=2m/s—2m/s=0
u=uf —v=3m/s—2m/s=1m/s
(initial momentum)’ = mu} + myu; = (3 kg)(2 m/s) + (1kg)(—5m/s) = lkg-m/s
(final momentum)’ = m,u}’ + myu’ = (3 kg)(0) + (1 kg)(1 m/s) = kg -m/s
Thus, as a result of the Galilean transformations, O’ also determines that momentum is conserved (but at
a different value from that found by 0).

An open car traveling at 100 ft/s has a boy in it who throws a ball upward with a velocity of
20 ft/s. Write the equation of motion (giving position as a function of time) for the ball as
seen by (a) the boy, (b) an observer stationary on the road.

(a) For the boy in the car the ball travels straight up and down, so
Y =vot' + tar* = Q0 ft/s)t' + 1(-32 ft/s2)e? = 20t — 1612
x'=z=0
(b) For the stationary observer, one obtains from the Galilean transformations
t=1t
x=x'+0ot=0+100 y=y'=20t—16/4 z=2=0

Consider a mass attached to a spring and moving on a horizontal, frictionless surface. Show,
from the classical transformation laws, that the equations of motion of the mass are the same
as determined by an observer at rest with respect to the surface and by a second observer
moving with constant velocity along the direction of the spring.

The equation of motion of the mass, as determined by an observer at rest with respect to the surface,
is F = ma, or :
d*
—k(x — xg) =m=—= 1
( 0. dtz ( )
To determine the equation of motion as found by the second observer we use the Galilean transforma-
tions to obtain )

x=x"+ ot Xo = xg + vt’ —_— = —

Substituting these values in (/) gives

25,7
—k(x’—x6)=mdx

ar X
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1.10.

1.12.

1.13,

Because (/) and (2) have the same form, the equation of motion is invariant under the Galilean
transformations.

Show that the electromagnetic wave equation,

Vo P P 1 o

ox? gy_z 3z2  * o

is not invariant under the Galilean transformations.

The equation will be invariant if it retains the same form when expressed in terms of the new
variables x’, ', z/, t'.  We first find from the Galilean transformations that
P O _
ax ot ot dy az
W _ o _ 9 _
dy az ox ax

From the chain rule and using the above results we have

de _do av Be W De ar o e . e _ 0%

ox  ox ox 5}75 9z ax  ar x X ax2 ax?
Similarly,
¥ _ ¢ a ¢
Fyz - ay" 7 - 922
Moreover,
3 3 ] 9 9* d* 92
L BN U B B

Substituting these expressions in the wave equation gives
32 9% a2 o2 2 &
¢ %% 3% 1 Fe 1 (2 ¢ _ 2% )

Y axor ax’?

9x"? 3y’ 9z2 ¢t 2

=0

Therefore the wave equation is not invariant under the Galilean transformations, for the form of the
equation has changed.

The electromagnetic wave equation follows from Maxwell’s equations of electromagnetic theory.
By applying the procedure described here to Maxwell’s equations, one finds that Maxwell’s equations
also are not invariant under Galilean transformations. Compare with Problem 6.23.

Supplementary Problems

A man (O’) in the back of a 20-ft flatcar moving at 30 ft/s records that a flashbulb is fired in the front
of the flatcar two seconds after he has passed a man (O) on the ground. Find the coordinates of the
event as determined by each -observer. Ans. (x', )= 20 ft, 25); (x,1)= (80 ft, 2 5)

A boy sees a deer run directly away from him. The deer is running with a speed of 20 mi/hr. The boy
gives chase and runs with a speed of 8 mi/hr. What is the speed of the deer relative to the boy?
Ans. 12 mi/hr

A boy in a train throws a ball in the forward direction with a speed of 20 mi/hr. If the train is moving
with a speed of 80 mi/hr, what is the speed of the ball as measured by a man on the ground?
Ans. 100 mi/hr



1.14.

1.15.

1.16.

1.17.

1.18.

1.19.

1.20.

1.21.

1.22,

1.23,

THE SPECIAL THEORY OF RELATIVITY [PART I

A passenger walks backward aiong the aisle of a train with a speed of 2 mi/hr as the train moves along a
straight track at a constant speed of 60 mi /hr with respect to the ground. What is the passenger’s speed
as measured by an observer standing on the ground? Ans. 58 mi/hr

A conductor standing on a railroad platform synchronizes his watch with the engineer in the front of a
train traveling at 60 mi/hr. The train is | /4 mile long. Two minutes after the train leaves the
platform a brakeman in the caboose lights a cigarette. What are the coordinates of the brakeman, as
determined by the engineer and by the conductor, when the cigarette is lit?

Ans. (x', )= (-} mi, 2 min); (x, )= (13 mi, 2 min)

A man sitting in a train lights two cigarettes, one ten minutes after the other. The train is moving in a
straight line with a velocity of 20 m/s. What is the distance separation as measured by a man on the
ground? Ans. 12,000 m i

A one-kilogram ball is constrained to move to the north at 3 m/s. It makes a perfectly elastic collision
with an identical second ball which is at rest, and both balls move on a north-south axis after the
collision. Compute, in the laboratory system, the total momentum before and after the collision.
Ans. 3kg-.m/s

For Problem 1.17 calculate the total energy before and after the collision. Ans. 4517

Refer to Problem 1.17. Calculate the total momentum before and after the collision as measured by an
observer moving northwards at 1.5 m /s. Ans. 0

For the observer in Problem 1.19 calculate the total energy before and after the collision.
Ans. 225]

Repeat Problems 1.19 and 1.20 for an observer moving eastwards at 2 m /s.
Ans. 5kg- m/s 37° north of west; 8.5 J

A person is in a boat moving eastwards with a speed of 15 ft/s. At the instant that the boat passes a
dock a person on the dock throws a rock northwards. The rock strikes the water 6 s later at a distance
of 150 ft from the dock. Find the coordinates of the splash as measured by the person in the boat.
Ans. (x,p, 1) =(—90 ft, 150 ft, 6 s)

Consider a one-dimensional, elastic collision that takes place along the x-axis of O. Show, from the
classical transformation equations, that kinetic energy will also be conserved as determined by a second
observer, O’, who moves with constant velocity u along the x-axis of 0.



Chapter 2

The Postulates of Einstein

2.1 ABSOLUTE SPACE AND THE ETHER

A consequence of the Galilean velocity transformations is that if a certain observer measures a
light signal to travel with the velocity ¢ = 3 X 10® m /s, then any other observer moving relative to him
will measure the same light signal to travel with a velocity different from ¢. What determines the
particular reference frame such that if an observer is at rest relative to this frame, this privileged
observer will measure the value ¢ for the velocity of light signals?

Before Einstein it was generally believed that this privileged observer was the same observer for
whom Maxwell’s equations were valid. Maxwell’s equations describe electromagnetic theory and
predict that electromagnetic waves will travel with the speed ¢ = 1 /Veypo =3 X 108 m/s. The space
that was at rest with respect to this privileged observer was called “absolute space.” Any other
observer moving with respect to this absolute space would find the speed of light to be different from
c. Since light is an electromagnetic wave, it was felt by 19th century physicists that a medium must
exist through which the light propagated. Thus it was postulated that the “ether” permeated all of
absolute space.

2.2 THE MICHELSON-MORLEY EXPERIMENT

If an ether exists, then an observer on the earth moving through the ether should notice an “ether
wind.” An apparatus with the sensitivity to measure the earth’s motion through the hypothesized ether
was developed by Michelson in 1881, and refined by Michelson and Morley in 1887. The outcome of
the experiment was that no motion through the ether was detected. See Problems 2.4, 2.5 and 2.6.

23 LENGTH AND TIME MEASUREMENTS—
A QUESTION OF PRINCIPLE

The one element common to both the null result of the Michelson-Morley experiment and the fact
that Maxwell’s equations hold only for a privileged observer is the Galilean transformations. These
“obvious” transformations were reexamined by Einstein from what might be termed an “operational”
point of view. Einstein took the approach that any quantity relevant to physical theories should, at
least in principle, have a well-defined procedure by which it is measured. If such a procedure cannot
be formulated, then the quantity should not be employed in physics.

Einstein could find no way to justify operationally the Galilean transformation # = ¢, i.e. the
statement that two observers can measure the time of an event to be the same. Consequently, the
transformation ¢’ = ¢, and with it the rest of the Galilean transformations, was rejected by Einstein.

24 THE POSTULATES OF EINSTEIN

Einstein’s guiding idea, which he called the Principle of Relativity, was that all nonaccelerating
observers should be treated equally in all respects, even if they are moving (at constant velocity)
relative to each other. This principle can be formalized as follows:

Postulate 1: The laws of physics are the same (invariant) for all inertial (nonaccelerating) observers.

7



8 THE SPECJIAL THEORY OF RELATIVITY [PART I

Newton’s laws of motion are in accord with the Principle of Relativity, but Maxwell’s equations
together with the Galilean transformations are in conflict with it. Einstein could see no reason for a
basic difference between dynamical and electromagnetic laws. Hence his

Postulate 2: In vacuum the speed of light as measured by all inertial observers is

c=1/Vepy =3 %108 m/s

independent of the motion of the source.

Solved Problems

2.1. Suppose that a clock B is located at a distance L from an observer. Describe how this clock
can be synchronized with clock 4, which is at the observer’s location.

Set the (stopped) clock B toread 75 = L/c. Att, =0 (as recorded by clock 4) send a light signal
towards the distant clock B. Start clock B when the signal reaches it.

2.2, A flashbulb is located 30 km from an observer. The bulb is fired and the observer sees the
flash at 1:00 P.M. What is the actual time that the bulb is fired?
The time for the light signal to travel 30 km is
CAs _ 30X10Pm _
¢ 3x108m/s
Therefore, the flashbulb was fired 1 X 10~* s before 1:00 P.M.

2.3. A rod is moving from left to right. When the left end of the rod passes a camera, a picture is
taken of the rod together with a stationary calibrated meterstick. In the developed picture
the left end of the rod coincides with the zero mark and the right end coincides with the
0.90-m mark on the meterstick. If the rod is moving at 0.8¢ with respect to the camera,
determine the actual length of the rod.

In order that the light signal from the right end of the rod be recorded by the camera, it must have
started from the 0.90-m mark at an earlier time given by

< 3X10:m/s

During this time interval the left end of the rod will advance through a distance As* given by (see Fig.

> As*=p Ar=(08x3Xx10°m/s)(3 X 107°s)=0.72 m
v=038¢c v=038¢
—_— —
—
P
SR S TR i FE N P

= -5

(b) Signal arrives from right end

(a) Signal starts from right
end; camera shutter closed.

Fig. 2-1

and is recorded by open camera
together with signal from left end.



