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Preface

When learning very formal material one comes to a stage where one thinks
one has understood the material. Confronted with a “real life” problem, the
passivity of this understanding sometimes becomes painfully clear. To be
able to solve the problem, ideas, methods, etc. need to be ready at hand.
They must be mastered (become active knowledge) in order to employ them
successfully. Starting from this idea, the leitmotif, or aim, of this book has
been to close this gap as much as possible.

How can this be done? The material presented here was born out of a
series of lectures at the Summer School held at Figueira da Foz (Portugal)
in 1987. The series of lectures was split into two concurrent parts. In one
part the “formal material” was presented. Since the background of those
attending varied widely, the presentation of the formal material was kept as
pedagogic as possible.

In the formal part the general ideas behind the Monte Carlo method
were developed. The Monte Carlo method has now found widespread appli-
cation in many branches of science such as physics, chemistry, and biology.
Because of this, the scope of the lectures had to be narrowed down. We
could not give a complete account and restricted the treatment to the ap-
plication of the Monte Carlo method to the physics of phase transitions.
Here particular emphasis is placed on finite-size effects.

The more “informal” part of the lectures concentrated on the practical
side. In a step-by-step fashion, those who attended the lectures were led from
“easy” applications to more advanced algorithms. In this part we truly tried
to give life to the ideas and concepts. We hope that in this book we have
captured the spirit of the Summer School. There, the gap mentioned before
narrowed, because many actively participated in both parts.

From the above it is clear that the material on the Monte Carlo method
presented in this book can be of use to many scientists. It can be used for
an advanced undergraduate or graduate course. In fact, a draft of this book
has been used for a course held at the University of Mainz. Not only do
we present the algorithms in great depth, we also encourage the reader
to actively participate by setting many problems to be worked out by the
reader.

Also for researchers and scientists using the Monte Carlo method this
book contains material which may be of importance for their research. We

\



treat, for example, the problem of statistical errors of a Monte Carlo es-
timate of a quantity. Consideration is also given to the problem of self-
averaging,.

We would like to thank first of all K. Kremer and D.P. Landau. Without
their continuing collaboration and constructive criticism this book would
not have its present form. Thanks are also due to the students of the con-
densed matter theory group at the University of Mainz for their participa-
tion and critical reading of the manuscript. Special thanks go to M. DeMeo
for running some of the programs.

Mainz, May 1988 Kurt Binder

Dieter W. Heermann
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1. Introduction:
Purpose and Scope of this Volume, and
Some General Comments

In recent years the method of “computer simulation” has started something
like a revolution of science: the old division of physics (as well as chemistry,
biology, etc.) into “experimental” and “theoretical” branches is no longer
really complete. Rather, “computer simulation” has become a third branch
complementary to the first two traditional approaches.

What, then, is the specific significance of computer simulation or “com-
puter experiments”? The answer is simply that computer simulation yields
ezact information (apart from statistical errors, but these can be made as
small as desired, at least in principle) on model systems which are precisely
characterized. (For problems in statistical physics this means that parame-
ters describing the Hamiltonian are known explicitly and exhaustively.)

In contrast, the information provided by analytic theory is exact only
in rather rare cases, while in most other cases uncontrolled approximations
are required. For example, statistical physics problems which are solvable
for a three-dimensional geometry are idealized limiting cases such as ideal
gases or ideal solutions, coupled harmonic oscillators, etc. The statistical
mechanics of even very simple models, such as the three-dimensional Ising
model, cannot be solved exactly, and much less is known about models with
realistic potentials between the atomic degrees of freedom. Thus computer
simulations are often designed to check the accuracy of some approximation
made in the analytical treatment of a model.

Similarly, the information provided by experiment is almost never pre-
cisely characterized in the sense that the effective Hamiltonian of a given
experimental sample is precisely known. Sometimes it is even controversial
whether some experimentally observed phenomenon is “intrinsic” or due to
some unknown impurity effects — remember that the chemical constitution
of an experimental sample is known only approximately anyway. These are
just a few examples from which it is clear that the comparison between
analytic theory and experiment does not always lead to conclusive answers,
and simulations are needed to bridge this gap. Thus, a direct comparison
between a simulation of a model and experiment is not hampered by inac-
curate approximations, as are often inevitable in analytic theory, and hence
may indicate more conclusively whether the model faithfully represents the
real system or not.



Of course, this is by no means the only reason why computer simula-
tions are attractive. It should be noted that simulations provide informa-
tion on model systems which is arbitrarily detailed, and whatever quantity
the researcher may consider useful he may attempt to “sample” from the
simulation. For example, scattering techniques applied to real systems usu-
ally yield information on two-particle correlation functions, but it is very
difficult to obtain direct experimental information on triplet correlations
or even higher-order correlations. In contrast, simulations can yield such
higher-order correlations readily, at least in principle. And while the exper-
imenter may change the temperature and pressure of his sample, he cannot
as easily assess the effect of varying the interatomic potential. But arbitrary
variations of interatomic potentials do not constitute a major difficulty for
a computer simulation in any way. It is now quite clear that the method of
computer simulation is of interest in its own right; it is a valid scientific ap-
proach to understanding the laws of nature, instructive to its practitioners
in a way that is complementary to theory or experiment.

In this situation, it is no surprise that there is a true explosion of the
literature on the subject. Many researchers who have previously been doing
research in theoretical physics (or theoretical chemistry, biology, etc.) start
doing simulations, as well as some experimentalists. And, last but not least,
many students who do not have any other research experience are attracted
to the field of computer simulation immediately.

This great interest, however, encounters a serious difficulty: at this
point, there is hardly any teaching of simulation methods at universites, and
there is even a lack of systematic textbooks from which the newcomer to
the field could easily learn to become an experienced practitioner. Although
one of the authors (K.B.) of the present book has edited two books which
collect many applications of the Monte Carlo computer simulation method
in statistical physics, these books do not have the character of textbooks
from which one can easily learn a new field. The other author (D.W.H.)
has written a more pedagogic account of computer simulation methods in
general; however, due to its generality it cannot go into very great detail
as far as the Monte Carlo investigation of phase transitions and related
problems (percolation, random walks, polymers, growth phenomena, etc.)
is concerned. Similar reservations apply to other techniques (such as the
“molecular dynamics” method) or the techniques have other limitations.
Thus the “art” of Monte Carlo simulation so far is predominantly being
learned and spread in two ways, namely, either by the tedious compara-
tive study of many original papers dating back over several decades, or by
private communications from experienced practitioners.

The purpose of the present book is to fill this gap, at least partially.
Thus from the outset we restrict the scope of the book to one method of
computer simulation, the Monte Carlo method, rather than trying to cover
the whole field. This restriction in scope has several motivations: first of all,



the expertise of the authors is mostly connected with this field: second, by
this restriction it is realistic to use this book as a textbook for a two hour
per week university course on computer simulation during one university
term. Alternatively, it is suitable for use as a text for a two-week workshop
on computer simulation, where the student may practice every day during
this two-week period, and thus learn the Monte Carlo method in a com-
pact intensive course. Finally, for a student or researcher who tries to work
through this book just by himself, the task still seems manageable!

Unlike previous literature on Monte Carlo simulation, the present book
gives equal weight to the theoretical foundations of the method (including
the analysis of the results) and to practical work with the method. Perform-
ing “computer experiments” must be learned, just as the experimentalist
learns to plan and set up experiments with real systems and evaluate the
data gained from them by attending practical courses. This need for practi-
cal work in order to learn to carry out such computer experiments has been
encountered again and again both by the authors of this book and by many
of their colleagues. In fact, preliminary unpublished notes for the present
book have been used rather successfully for a workshop on computer simu-
lation held at Figueira da Foz, Portugal, in September 1987, and at various
courses held at the University of Mainz. Thus practical experience in teach-
ing Monte Carlo methods to students was a major factor in determining the
content of this book. It has been our experience that background knowledge
of a programming language such as PASCAL can always be assumed, as well
as some knowledge of statistical mechanics, including the basic principle of
phase transitions. If the reader is not yet familiar with concepts such as
“critical exponents” and the “scaling relations” among them and models
such as the Ising model, percolation, etc., he can easily find various texts
where these concepts are described clearly (we refer to some of these in this
book). Thus there is no need to repeat these basic concepts.

However, in using the present book it is crucial to use the theoreti-
cal part (Chap. 2 in this book) together with the “guide to practical work”
(Chap. 3). These chapters both deal with the same subjects (simple sam-
pling, random and self-avoiding walks, percolation, the Ising model, etc.)
but from somewhat different points of view. In the first part, concepts for
the numerical treatment of these problems were introduced and Justified.
In the second part, these concepts are applied to problems, and active par-
ticipation by the reader (e.g., by working on these problems on a personal
computer) is required in order to understand the concepts more deeply.

A particularly suitable way of doing so is the form of a “workshop”
where this text is used as the instruction manual. A solution to a prob-
lem is presented and immediately tried out, and the method for solving the
problem, the algorithm, is improved upon. Of course, a workshop works
best if there is interaction between the students and the teacher and among
the students. There is a component of feedback, from which everybody in



the workshop benefits. In the form of a written text a workshop is some-
what less efficient. Nevertheless, we have structured the text such that some
form of interaction with the text, other than passive reading, is possible and
necessary.

The aim is to present enough matieral so that one can start to develop
algorithms for other problems based on the concepts presented here. To
achieve this goal it is necessary to work through the entire material. Thus
this “workshop” (Chap.3) is a single unit. A second goal of Chap.3 is to
present methods of data analysis and to enable the reader to become familiar
with how they are applied. Again, active participation is requested.

With the concept used for this book with two chapters which are
strongly correlated with each other, some redundancy is inevitable and even
necessary for the sake of clarity and coherence of presentation. In fact, the
scientific background of all the methods discussed in this book has been
presented elsewhere in the literature: what is new and radically different
from previous work is the introductory character which smoothly leads the
student to a lot of practical work and experience with the method. For this
pedagogic goal slight redundancies are even desirable. We have deliberately
selected very simple problems of statistical physics, such as random and
self-avoiding walk, percolation and the Ising model, for which all concepts
and methods can be explained and demonstrated comparatively easily, and
do not treat more complicated problems such as fluids with realistic po-
tentials, spin glasses and other disordered materials, quantum-mechanical
Monte Carlo methods, or problems in lattice gauge theory, in this book. In
our opinion, the reader will be able to move on to such problems using the
other books which exist already on the Monte Carlo method, after he has
worked through the present text. We deal with the characteristic features
of thermal averaging for lattice problems with discrete degrees of freedom
(Ising model, Potts model, etc.) as well as continuous ones (Heisenberg
and XY magnets, ¢* model, etc.) in some depth, while off-lattice prob-
lems such as simple fluids, are mentioned only briefly. Particular attention
is paid to understanding the limitations of the method (effects due to finite
size and boundary conditions, finite observation time effects, the question
of self-averaging), and what one does to overcome these limitations: for
example, finite-size effects at second-order phase transitions as well as at
first-order phase transitions can be used as a valuable tool for studying the
bulk properties of the system, if the appropriate finite-size scaling theory is
invoked. The dynamic interpretation of the Monte Carlo importance sam-
pling is discussed as well. It is shown that although on the one hand an
unwanted slowing down of convergence is implied, particularly near critical
points (critical slowing down) or in glassy systems, on the other hand the
Monte Carlo method becomes a unique tool for the study of the kinetics of
stochastic models.



2. Theoretical Foundations of the
Monte Carlo Method
and Its Applications in Statistical Physics

In this chapter we first introduce the basic concepts of Monte Carlo sam-
pling, give some details on how Monte Carlo programs need to be organized,
and then proceed to the interpretation and analysis of Monte Carlo results.

2.1 Simple Sampling Versus Importance Sampling

2.1.1 Models

Statistical physics deals with systems with many degrees of freedom. A
typical problem posed by statistical physics is to compute “average” macro-
scopic observables of a system for which the Hamiltonian is assumed to be
known. For instance, let us consider magnetic systems: if a ferrromagnet
has very strong uniaxial anisotropy we may describe it by the Ising model,
where N spins S; interact as

Hising = —J Z 5;5;—H E S; , Si=+£1 , (2.1.1)
(i,j) =1
where the spin S; at lattice site i can point up or down along the “easy
axis”, the exchange energy J is restricted in (2.1.1) to nearest neighbors,
and H is a magnetic field (the term —H _; S; describing the Zeeman energy
of the system). Other cases occur, however, if the ferromagnet has planar
anisotropy (the spin being restricted to lie in the zy plane: XY model) or
is fully isotropic (Heisenberg model):
Hxy = —J (E)(Sfo +8{SY) - Hz 357 (2.1.2)
i,j '

(SEP+(SD*=1

HHeisenberg = -J Z (Si- Sj) - H, ES,Z ) (2.1.3)
(i.3) :

(ST +(SI)2 + (577 =1

Of course, the large variety of real materials that the experimentalist can

5



prepare in his laboratory creates interest in many variants of these models:
instead of spin quantum number § = %, implied in (2.1.1), or S — oo, iIm-
plied in (2.1.2,3), we may wish to consider general spin quantum numbers;
instead of exchange between nearest neighbors only, we may wish to include
exchange energies between next nearest neighbors, third nearest neighbors,
etc.; instead of the full isotropy in (2.1.3), there may be a need to add a
uniaxial or planar anisotropy term to it; instead of uniform exchange J and
uniform filed H in (2.1.1), it may be appropriate to work with random ex-
change constants J;j and random fields H;, to model some frozen-in random
disorder in the system. Thus, magnetic solids already provide us with an
incredible wealth of model Hamiltonians, for which (2.1.1-3) just provide
prototype examples, and this wealth of models is only a small part of the
broad spectrum of applications provided by condensed matter physics.

One task of statistical physics is to compute from the model Hamilto-
nian H the desired average properties, e.g. the average energy E or average
magnetization M per degree of freedom,

E=(H)p/N , M:<Zsi>T/N . (2.1.4)

Here the thermal average of any observable A(z)[A = H, ) ; S;, etc., and
the vector © in phase space stands symbolically for the set of variables

describing the considered degree of freedom, e.g. & = (51,52, ..., Sn) for

(2.1.1) & = (51, 52, ..., Sn) for (2.1.3)] is defined in the canonical ensemble
1

(A@)r =5 f de exp| — H(z)/kpT)A(z) (2.1.5)

Z= / dz exp[ — H(z)/kpT)

It is appropriate to call these classes of problems “statistical physics” be-
cause the normalized Boltzmann factor

p(z) = exp| - H(2)/kpT] (2.1.6)

plays the role of a probability density describing the statistical weight with
which the configuration @ occurs in thermal equilibrium.

Now although (2.1.6) gives a formally exact description of the proba-
bility distribution p(x), we are still in trouble: we are neither interested in
such detailed information (in our examples @ stands for a set containing the
N spin degrees of freedom), nor is it possible to carry out the integrations
in this high-dimensional space (2.1.4,5) in the general case.



2.1.2 Simple Sampling

The Monte Carlo method in equilibrium statistical mechanics starts from
the idea of approximating the exact equation (2.1.5), where one integrates
over all states {@} with their proper weights p(z), by an integration using
only a characteristic subset of phase space points {@1,®3, ...,z s} which
are used as a statistical sample. Clearly, if one considers the limit M — oo,
the discrete sum

M
> exp[ — H(=1)/kpT1 A=)
Alz) = =2 (2.1.7)

M
> exp[ — H(z1)/kpT)
=1

must approximate (2.1.5), just as in numerical integration routines inte-
grals are replaced by sums [for discrete degrees of freedom, such as the
Ising problem, [ de in (2.1.5) already stands for a discrete summation over
all the 2%V states = (51, ..., SN), of course, but in (2.1.7) we then wish
to work with a small subset of these states only, M< 2V ]- But, unlike in
standard routines to solve one-dimensional integrals [ f(z)dz, where f(z)
is a function of one real variable z only, instead of a high-dimensional vector
x, it makes no sense to choose the points «; according to a regular grid,
rather we have to choose the points ¢; at random. In order to appreciate
this point in detail, let us consider the XY model defined in (2.1.2) as an
example. Because (%)% +(SY)2 = 1 for each site 1, it is convenient to write
S? = cosip;, SY = siny; and take the angle ¢;(0 <¢; < 2m) as a variable
to characterize the degrees of freedom. Then [ da simply means [] foz T dep;.
Let us now introduce a regular grid, defined by 4,027 = (v;/p)2m, with v; =
1,2, ...,p, where p is some integer characterizing the grid. Obviously the
total number of points to be used in this grid is p, which is very large for
large N, impossible to use in practice even if p is rather small. Apart from
this difficulty, even if we were able to work with a reasonably large value
for p, we would still have the problem that almost all points were located
on the surface of the integration hypercube and almost none in its interior.
Since in any lattice direction of the hypercube there are p points of the grid,
p— 2 being in the cube interior, the total fraction of points in the interior is

(o —2)/pY = —2/p)N

:exp[Nlog(l—g>] ~ exp[_ﬁ\f_] — 0
p p large p N — oo

A much better, i.e. uniform, distribution of grid points is achieved if we
choose the points z; at random, utilizing “pseudo-random numbers” pro-
duced by a “random number generator” built into the computer. This use



of random numbers has given this game its name! In fact, the method de-
scribed thus far by (2.1.7) is indeed a variant of Monte Carlo methods,

namely the simple sampling Monte Carlo method.

2.1.3 Random Walks and Self-Avoiding Walks

As an example of problems for which the simple sampling technique has
actually been and is still used, we mention the study of self-avoiding walks
(SAWs) on lattices, see e.g. [2.1]. These self-avoiding walks are used for
modelling the large-scale properties of long flexible macromolecules in so-
lution [2.2—4]. Since it is rather instructive to discuss both the advantages
and the disadvantages of studying such random-walk-type problems with
simple sampling Monte Carlo methods, we give a brief digression on this
subject in the following.

Figure 2.1 shows various types of random walks on the square lattice.
There are four different types of vectors v(k) connecting a site to its nearest
neighbor on the lattice (the lattice spacing is taken to be unity)

’0(1) = (1’0)’ 0(2) - (07 1)7 0(3) = ('—170)’ 1}(4) = (07 _1)

(2.1.8)
16
w| %5 le 2 |22
7
' 1.7,
3, 4 19 f20 RW ta)
D600 0l
[FLINCI
%, 1518 19
1] 13 1;’ ”__L
wt 10 4 3
< NRRW (b)
9 1
6} 5 |2
8 7 0
4 3
! > -
2
Fig. 2.1. An unrestricted random walk (RW)
. of 22 steps on the square lattice (a), a
5, r SAW's  [c) nonreversal random walk (NRRW) (b), ;nd
Is 43 two self-avoiding walks (SAWs) (c). Sites are
16 2 numbered in the order that they are visited.
b§ J Bonds with arrows are selected consecutively
4 0 1 A19 by means of random numbers. The dots on
> > the lattice sites then represent the monomers

of the polymer chain




An algorithm which generates simple (unrestricted) random walks of N
steps now proceeds as follows:

Algorithm 2.1. Random walks

i) ro = 0 (origin of coordinate system) and put £k =0

i1)  Choose a random integer v between 1 and 4

iii) Replace k by k + 1 and put v = rp_1 + v(vg—1)

iv) If k= N put v, = R (end to end distance of the walk); else return to
step (ii). (2.1.9)

An example of a walk with N = 22 generated by this procedure is shown
in Fig. 2.1a; the generation of random walks will be studied in more detail
in Sect.3.2.1. At this point we only note that for a lattice of coordination
number z the total number Zy of all such (different) random walks (RW's)
is simply

ZRW =N (2.1.10)
If the random walk is taken as a model for a polymer chain, Zy is just
the polymer partition function. (In the absence of any interactions all chain
configurations have exactly the same statistical weight.)

While Algorithm 2.1 my be a reasonable model for hopping conduction
in solids or other diffusion processes on ideal lattices, it is not a good model
for polymers in solution, not just because of the unrealistic features of using
a lattice structure to model the conformations of a macromolecule, but in
particular because the excluded volume interaction is ignored. Unlike real
polymers, the random walk in Fig. 2.1a intersects itself and folds back on
itself. The latter feature is eliminated by defining the nonreversal random
walk (NRRW) for which immediate reversals are forbidden. We can define
an algorithm for this NRRW by introducing a sort of “periodic” boundary
condition for the vectors v(vy) by defining

v(r+4) =v(v) (2.1.11)
and modifying step (ii) of (2.1.9) for k>1 by introducing a one-step memory:

ii’): Choose a random number out of the triplet :
{vk—1 — 1, vg_1, vg—1 +1} and take it as vy. (2.1.12)

An alternative realization of the NRRW would proceed as in (2.1.9)
but would throw vy away if v(vg) = v(vg + 2), using (2.1.11) if necessary,
and iterating step (ii). In this way the same random numbers yielding the
RW with N = 22 in Fig. 2.1a yield a NRRW with N = 19 in Fig. 2.1b. From
(2.1.12) we realize that



