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PREFACE

The concept of optimization is intrinsically tied to humanity’s desire to excel.
Though we may not consciously recognize it and though the optimization process
takes different forms in different fields of endeavor, this drive to do better than
before consumes much of our enzrgy, whether we are athletes, artists, business-
persons, or engineers. The field we are concerned with is that of engineering and,
while the emphasis here is on mechanical, aeronautical, and civil engineering, this
is by no means the limit of applicability; it simply reflects my own experience and
interests.

We will consider the use of numerical optimization techniques to devise a
rational, directed design procedure. Although these methods provide a computa-
tional tool for design, there is much more to be gained from this study. Indeed,
numerical optimization provides us with a new design philosophy. It gives us an
ordered approach to design decisions where before we relied heavily on intuition
and experience. It is this order which makes the techniques presented here so very
attractive, because it provides insight into the actual design process. However, this
should not be construed to cwzgest that the design process can be reduced to a
few computer runs or that our intuition and experience are unimportant. Rather,
the computer can now be used to relieve us of the tedium of repetitive calcula-
tions, freeing us to spend time on the truly creative aspects of engineering design.

The methods presented here have gone through an extensive development
period of approximately 20 years. While much research in automated design
optimization remains to be done, the field has matured to the point where the
techniques can be routinely applied by practicing engineers to a large percentage
of design tasks. However, education in the concepts and applications of numerical
optimization 1s not yet a principal part of most engineering curricula. Conse-
quently, few practicing engineers are actually using this powerful tool in design.
For this reason, there is strong motivation to provide a book which can be used
for classroom education and also for self-study or as a continuing education aid.
It is hoped that the concepts presented here are organized in a logical enough way
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XiV PREFACE

and presented in plain enough language that many engineers can in some way use
this information.

The purpose of this book is threefold. First, we wish to gain a basic
knowledge of numerical optimization algorithms, together with their strengths
and weaknesses. Second, the student is encouraged to gain computational experi-
ence by programming these algorithms for the computer. and finally, a variety of
design applications are discussed to identify those design areas where numerical
optimization techniques have been applied in the past and where they may be
applied in the future.

This book is written to be a senior or graduate level textbook but is suited for
self-study by practicing engineers. Also, the book will provide a ready reference
for many of the best numerical optimization algorithms. The student should have
a solid background in engineering fundamentals matrix algebra, and computer
programming. Because the principal purpose nere ia to provide design tools for
the engineer, we will avoid mathematical proofs and theoretical discussions of the
various algorithms. Instead we will address such questions from a more pragmatic
viewpoint of asking, dces a given technique provide a good engineering answer in
an efficient manner? To this end, we will emphasize those aspects of numerical
optimization which attempt to model the thought processes of a good design
engineer.

In the first chapter, we introduce the basic concepts of numerical optimiza-
ton. We identify the characteristics of unconstrained and constrained optimiza-
tion problems and offer the general mathematical problem statement. We describe
the most common iterative approach to the solution of the optimization problem
and very briefly discuss the necessary mathematical conditions for a solution to
be the optimum among all possible solutions. These concepts provide the
mathematical basis 1¢ understanding sontz of the more powerfu! optimization
algorithms to be discussed in later chapters. Finally, we identify some of the
advantages atd limitations to the use of numerical optimization technique in
cngineeripg design to provide a broad perspective on the applicatiopn of this
general design approach.

In Chap. 2, we begin to develop the numerical tools necessary for the creation
of an efficient design capability. In this chapter we discuss the solutiom of
optimization problems defined by only one variable Here we consider two o T he
most popular and powerful techniques for solving tms problem. polynorual
approximations and the golden section method. Methods are presented Lir
finding either the minimum or the zero value of a funcuen of qpe waf i
Consideratle generality is maintained throughout this discussion so thy tne
student gains a broad capability for the solution of this problem. This chapier
contains a discussion of minimizing a function of one variascle subject to
constraints on other variables. The chapter concludes with a recommended
algorithm for minimizing functions of one variable. The techniques discussed here
are important because these tools will be used throughout the remainder of the
book when dealing with more general multivariable optimization problems.
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Chapter 3 extends the discussion to the minimization of multivariable uncon-
strained functions. This is a natural progression because this is the simplest
multivariable problem to understand and yet the methods developed here are
later used to solve constrained multivariable optimization problems. Uncon-
strained minimization techniques are separated into zero-, first-, and second-order
methods. It is seen that each level of algorithmic sophistication has a place in
automated design, depending on the nature of the problem being solved.

Chapter 4 introduces the most extensively developed of the multivariable
constrained optimization techniques. This is the solution of strictly linear analysis
and design problems. The basic algorithm presented here is the standard simpiex
r-ethod. While this is not the most efficient of the simplex methods, it is most
easily developed and understood and therefore serves best to introduce the
concepts. Linear problems are encountered in such diverse areas as limit analysis
and design of structures and industrial resource allocation and, as such,.are
valuable in their own right. Also, linear programming techniques will be used
later in solving nonlinear constrained minimization problems. While the student
1s encouraged to program the standard simplex algorithm to gain a proper
understanding of the concepts, it is noted that a very efficient, thoroughly
debugged, and well-documented linear programming code probably already exists
on the local computer system or is readily available from other sources. Therefqre,
if extensive use of linear programming techniques is anticipated, it is best to
obtain an available code elsewhere and spend time on more fruitful endeavors.

Chapters 5, 6, and 7 provide the fundamental capability we wish to develop
for general engineering design. This gives the student the ability to solve multi-
variable nonlinear constrained optimization problems of the type most often
encountered in practice.

Chapter 5 develops a technique for the solution of the constrained optimiza-
tion problem by conversion to an equivalent unconstrained problem. The basic
concept here is to convert the original consfrained optimization problem to a
sequence of unconstrained problems through the use of penalties for constraints.
Three techniques are presented, the exterior, interior, and extended interior
penalty functions. Each approach has its own attractions as well as drawbacks,
and a good understanding of these techniques aids in determining which is most
useful for solving specific design problems. A powerful sequential unconstrained
minimization technique known as the augmented lagrange multiplier method is
presented in this chapter. This method is capable of solving nonlinear program-
ming problems subject to nonlinear equality as well as inequality constraints.
Furthermore, it avoids many of the numerical difficulties associated with the more
traditional sequential unconstrained minimization technigues. Each of the meth-
ods developed in this chapter makes use of the algorithms developed in Chaps. 2
and 3 for unconstrained minimization.

Chapter 6 is devoted to so-called direct methods. ¥hese metheds attemipt to
incorporate information about the constraints directly into the optimization
problem rather than converting the oroblem to an equivalent unconstrained one
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as was done in Chap. 5. Chapter 6 includes sequential linear programming, the
method of feasible directions and the generalized reduced gradient method as well
as a robust feasible directions method containing desirable features from the
other techniques. The final section of Chap. 6 presents a recent sequential
quadratic programming technique which is found to be a particularly powerful
method.

Chapter 7 addresses many of the practical aspects of using numerical
optimization in engineering design. These include design variable linking where
one design variable in the optimization process controls more than one variable in
the actual engineering system. The concept of a reduced basis for design is shown
to be a generalization of design variable linking and is particularly powerful for
including practical constraints into the mathematical design problem. The use of
approximation techniques in design optimization is discussed in detail. The
principal motivation here is to develop methods which use whatever detailed
analysis techniques we choose but formally approximate this problem in such a
way that the efficiency of the optimization process is greatly improved while
retaining all of the features of the original problem. Chapter 7 concludes with the
presentation of techniques whereby the sensitivity of the optimum design with
respect to various changes in the problem statement is obtained. This provides us
with the ability to predict the effect of changes in material properties and loading
or constraint limits on the design, even after the optimization process has been
completed.

Chapter 8 introduces advanced optimization techniques, specifically the con-
cept of duality. Duality 1s not directly useful in all design tasks, but for those
where it applies, duality offers yet another dimension to our design optimization
capability In developing these methods, the concept of convexity is first pre-
sented, followed by the concepts of a saddle point and mathematical separability.
It is then shown that if a design problem naturally exhibits the separability
property or can be reasonably approximated as a separable problem, significant
efficiency improvements in optimization can be achieved. There is an added
benefit to primal-dual methods; that is, that we can now design using discrete
values for the independent design variables. This includes the number of plies in a
composite material or selection of the design from a table of available structural
séctions as examples. Finally, primal-dual methods incorporate many of the
concepts developed in previous chapters in such a way as to provide fundamental
msight into the concepts of engineering design optimization and lay the ground-
work for much future developshent in this exciting field.

Chapter 9 is the first applications chapter and here the specific topic of
structural optimization is addressed. A concerted effort is made to identify
efficient means of approaching the problem and understanding lessons learned
from past experience. It is a clear understanding of how numerical optimization
has been applied in the past that gives us insight into how it may be applied in the
future.

Chapter 10 concludes the book with a discussion of a variety of optimization
applications. The purpose here, as in Chap. 9, is to identify problems where
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optimization has been used effectively. While a comprehensive list is not possible,
this discussion does identify typical applications and provides further insight into
problem formulation and possible future applications.

Throughout the book, the practicalities of making engineering design deci-
sions on the computer are stressed. Theoretical detail is limited to that necessary
to understand the concepts. Most of all, it is hoped that the practicing engineer of
the future will be more completely equipped to use advanced optimization
techniques to improve the quality of life for ail.

Garret N. Vanderplaats
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CHAPTER

ONE
BASIC CONCEPTS

1-1 INTRODUCTION

The concept of optimization is basic to much of what we do in our daily lives.
The desire to run a faster race, win a debate, or increase corporate profit implies a
desire to do or be the best in some sense. In engineering, we wish to produce the
“best quality of life possible with the resources available.” Thus in “designing”
new products, we must use design tools which provide the desired results in a
timely and economical fashion. Numerical optimization is one of the tools at our
disposal.

In studying design optimization, it is important t¢ distinguish ‘between
analysis and design. Analysis is the process of determining the response of a
specified system to its environment. For example, the calculation of stresses in a
structure that result from applied loads 1s referred to here as analysis. Design, on
the other hand, is used to mean the actual process of defining the system. For
example, structural design entails defining the sizes and locations of members
necessary to support a prescribed set of loads. Clearly, analysis is a subproblem in
the design process because this is how we evaluate the adequacy of the design.

Much of the design task in engineering is quantifiable, and so we are able to
use the computer to analyze alternative designs rapidly. The purpose of numerical
optimization is to aid us in rationally searching for the best design to meet our
needs.

While the emphasis here is on design, it should be noted that these methods
can often be used for analysis as well. Nonlinear structural analysis is an example
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where optimization can be used to solve a nonlinear energy minimization prob-
lem.

Although we may not always think of it this way, design can be defined as the
process of finding the minimum or maximum of some parameter which may be
called the objective function. For the design to be acceptable, it must also satisfy
a certain set of specified requirements called constraints. That is, we wish to find
the constrained minimum or maximum of the objective function. For example,
assume we wish to design an internal-combustion engine. The design objective
could be to maximize combustion efficiency. The engine may be required to
provide a specified power output with an upper limit on the amount of harmful
pollutants which can be emitted into the atmosphere. The power requirements
and pollution restrictions are therefore constraints on the design.

Various methods can be used to achieve the design goal. One approach might
be through experimentation where many engines are built and tested. The engine
providing maximum economy whilc satisfying th constraints on the design would
then be chosen for production. Clearly this is a very expensive approach with
little assurance of obtaining a true optimum design. A second approach might be
to define the design process analytically and then to obtain the solution using
differential calculus or the calculus of variations. While this is certainly an
attractive procedure, it is seldom possible in practical applications to obtain a
direct analytical solution because of the complexities of the design and analysis
problem.

Most design organizations now have computer codes capable of analyzing a
design which the engineer considers reasonable. For example, the engineer may
have a computer code which, given the compression ratio, air-fuel mixture ratio,
bore and stroke, aiid other basic design parameters, can analyze the internal-com-
bustion engine to predict its efficiency, power output, and pollution emissions.
The engineer could then change these design variables and rerun the program
until an acceptable design is obtained. In other words, the physical experimenta-
tion approach where engines are built and tested is replaced by numerical
experimentation, recognizing that the final step will still be the construction of
one or more prototypes to verify our numerical results.

With the availability of computer codes to analyze the proposed design, the
next logical step is to automate the design process. In its most basic form, design
automation may consist of a series of loops in the computer code which cycle
through many combinations of design variables. The combination which provides
the best design satisfying the constraints is then termed optimum. This approach
has been used with some success and may be quite adequate if the analysis
program uses a small amount of computer time. However, the cost of this
technique increases dramatically as the number of design variables to be changed
increases and as the computer time for a single analysis increases.

Consider, for example, a design problem described by three variables. As-
sume we wish to investigate the designs for 10 values of each variable. Assume
also that any proposed design can be analyzéd in one-tenth of a central process-
ing unit (CPU) secbnd on a digital computer. There are then 10° combinations of
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design variables to be investigated, each requiring one-tenth second for a total of
100 CPU seconds to obtain the desired optimum design. This would probably be
considered an economical solution in most design situations. However,
now consider a more realistic design problem where 10 variables describe the
design. Again, we wish to investigate 10 values of each variable. Also now
assume that the analysis of a proposed design requires 10 CPU seconds on the
computer. The total CPU time now required to obtain the optimum design
is 10" seconds, or roughly 3200 years of computer time! Clearly, for most
practical design problems, a more rational approach to design automation is
needed.

Numerical optimization techniques offer a logical approach to design auto-
mation, and many algorithms have been proposed in recent years. Some of these
techniques, such as linear, quadratic, dynamic, and geometric programming
algorithms, have been developed to deal with specific classes of optimization
problems. A more general category of algorithms referred to as nonlinear pro-
gramming has evolved for the solution of general optimization problems. Meth-
ods for numerical optimization are referred to collectively as mathematical
programming techniques.

Though the history of mathematical programming is relatively short, roughly
30 years, there has been an almost bewildering number of algorithms published
for the solution of numerical optimization problems. The author of each algo-
rithm usually has numerical examples which demonstrate the efficiency and
accuracy of the method, and the unsuspecting practitioner will often invest a great
deal of time and effort in programming an algorithm, only to find that it will not
in fact solve the particular optimization problem being attempted. This often
leads to disenchantment with these techniques which can be avoided if the user is
knowledgeable in the basic concepts of numerical optimization. There is an
obvious need, therefore, for a unified, nontheoretical presentation of optimization
concepts.

The purpose here is to attempt to bridge the gap betweer optimization theory
and its practical applications. The remainder of this chapter will be devoted to a
discussion of the basic concepts of numerical optimization. We will consider the
general statement of the nonlinear constrained optimization problem and some
(slightly) theoretical aspects regarding the existence and uniqueness of the solu-
tion to the optimization problem. Finally, we will consider some practical
advantages and limitations to the use of these methods.

Wumerical optimization has traditionally been developed in the operations
research community. The use of these techniques in engineering design was

‘popularized in 1960 when Schmit [1] applied nonlinear optimization techniques to
structural design and coined the phrase ““structural synthesis.” While the work of
Ref. 1 was restricted to structural optimization, the concepts presented there
offered a fundamentally new approach to engineering design which is applicable
to a wide spectrum of design problems. The basic concept is that the purpose .of
design is the allocation of scarce resources [2]. The purpose of numerical optimi-
zation is to provide a computer tool to aid the designer in this task.
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1-2 OPTIMIZATION CONCEPTS

Here we will briefly describe the basic concepts of optimization by means of two
examples.

Example 1-1 Unconstrained function minimization
Assume we wish to find the minimum value of the following simple algebraic
function.

F(X) = 10X} — 20X2X, + 10X2 + X2 - 2X, + 5 (1-1)

F(X) is referred 10 as the objective function which is to be minimized, and we
wish to determine the combination of the variables X; and X, which will
achieve this goal. The vector X contains X; and X,, and we call them the
design, or decision, variables. N limits are imposed on the values of X, and
X, and no additional conditions must be met for the “design” to be
acceptable. Therefore, F(X) is said to be unconstrained. Figure 1-1 is a
graphical representation of the function, where lines of constant value of
F(X) are drawn. This function is often referred to as the banana function
because of its distinctive geometry. Figure 1-1 is referred to as a two-variable
design space, where the design variables X; and X, correspond to the
coordinate axes. In general, a design space will be n dimensional, where n is
the number of design variables of which the objective is a function. The
two-variable design space will be used throughout our discussion of optimiza-
tion techniques to help visualize the various concepts.

From Fig. 1-1 we can estimate that the minimum value of F(X) will occur
at X* =1 and X =1. We know also from basic calculus that at the
optimum, or minimum, of F(X), the partial derivatives with respect to X; and
X, must vanish. That is

AF(X)/0X, = 40X} — 40X, X, +2X, —2=10 (1-2)
IF(X)/3X, = —20X2 + 20X, =0 (1-3)

Solving for X, and X,, we find that indeed X;* = 1 and X3* = 1. We will see
later that the vanishing gradient is a necessary but not sufficient condition for
finding the minimum.

In this example, we were able to obtain the optimum both graphically and
analytically. However, this example is of little engineering value, except for
demonstration purposes. In most practical engineering problems the minimum of
a function cannot be determined analytically. The problem is further complicated
if the decision variables are restricted to values within a specified range or if other



