DGbow to
ok 0§

- Parsonal
Computer

Jim HufFfman/Robert C Bnuce

Do-it- Ifgd o debugging. Learn how to recogni
dIm pblmypgm ymh ywy

[

i
5
S
-
i
B3
e

8264006

W

URUINR

E8264006

How to Debug
Your Personal Gomputer

Robert Bruce Jim Huffman

e,

/ ®

1 » \ - ‘,
[&>, = |
V VY | = 1
\\ S Dol
\ y

‘@‘ RESTON PUBLISHING, ING., Reston, Virginia
A Prentice-Hall Company

gupaen

-

Library of Congress Cataloging in Publication Data

Bruce, Robert C
How to debug your personal computer.

Includes index.

l. Debugging in computer science.
I. Huffman, Jim. II. Title.
QA76.6. B775 001.64 80-18091

ISBN: 0-8359-2924-8

©1980 by

RESTON PUBLISHING COMPANY, INC.
A Prentice-Hall Company

Reston, Virginia 22090

All rights reserved. No part of this
book may be reproduced in any way, or

by any means, without permission in
writing from the publisher.

19 9 8 7 6 5 4 3 2 1

Printed in the United States of America.

How to Debug
Your Personal Gomputer

Introduction

A program that should but won’t run on your computer is a source
of building frustration, especially if you are just beginning to write your
own or just paid good money for some new software! Short of starting
again at Square One or sending the program back, what can you do
about it? Debug!

This book will show you how you can tell when there is a bug in a
program or your system, how to trakc it down to tis source, and how to
get rid of it or get around it. If you have some knowledge of BASIC, you
can put the techniques described in this book to work. All other
information is included.

You would be absolutely correct in assuming that this is a book on
the basics of debugging. In this respect, nothing is presumed. What we
attempt to do here is show you how—step-by-step—to recognize and
eliminate bugs when you're writing a program and how to spot them
during the shakedown period. Also there are techniques for finding bugs
in a program you didn’t write, easy-to-follow guides to help you
determine where in the program a bug is hiding and how to either
eliminate it or work around it.

Of course, it is always easier to see bugs on a flowchart. In Chapter
1 you'll earn how to recognize them and how to construct a flowchart
for and existing program. If the bug can’t be eradicated by a change in
the flowchart, the miost effective and accurate method of debugging is

doing by hand with pencil and paper what the computer does elec-
tronically. You'll learn how to analyze a code sequence and follow the
changing states of indexes and variables. Sometimes it is necessary to
examine information stored inside the computer. Chapter 3 explains
how to use print statements in an effort to track down even the most
elusive bug.

And once in awhile, in spite of your best effort, a bug will
successfully avoid correction. Most often you’ll run into this situation in
simulation and game programs where the program is more comples
rather than a straightforwarrd series of events. In Chapter 4 you'll learn
how to delvelop and integrate a patch to get around a problem that
simply evades solution.

In Chapter 5 you'll learn where and how each debugging tool can
be used most effectively. You'll go through a typical debugging effort
and observe how a programmer uses the tools available to achieve an
accurate cure for each situation in the shortest possible time.

At some point, you'll probably face a situation where a new or
seldom-used program will not run on your computer. Where no bus
appear obvious” you may save frustrating hours by making sure your
hardware is working properly. Chapter 6 explains the operation of the
most popular peripheral units in an effort to lead you to a bug that is not
in the programming. If you're a hobbyist or a beginning programmer,
this book should serve you well as a basic handbook on debugging.
You'll find more advanced techniques on debugging in Software Debug-
ging for Microcomputers and Personal Computing (Reston Publishing
Co.). The material in this book was drawn from these volumes.

8264006

Gontents

1

Introduction

1 Debugging the Flowchart 1

It is easiest to eliminate bugs on a flowchart. In this chapter
you'll learn how to construct a flowchart for an existing
program and use it to find the cause of bugs.

2 Debugging by Hand Calculation 22

The most effective and accurate method of debugging is doing
by hand with pencil and paper what the computer does
electronically. You'll learn how to go through a sequence of
code step by step, following the changing status of indexes and
variables. While tedious, this task will reveal even minute
flaws in a code.

3 Debugging with Print Statements 55

Information stored inside a computer can be usetul in a
debugging procedure. This chapter explains what print state-
ments can and can’t do, and shows how to use them effectively.

4 Adding Program Patches ' 76

Occasionally, a bug will persistently avoid exposure, despite
the most diligent effort to track it down. Most often this
happens in simulation and game programs, where the program
structure looks more like a fishnet than a tree. In such cases, a
patch (or kluge or Band-Aid) can be used to smooth over a
rough spot of code, thus rendering the bug harmless. This
chapter shows how to use patches safely where nothing else
will work.

5 Using Debugging Tools 106

Usually, each part or subpart of a program is subject to a
variety of debugging approaches. In most cases, a little experi-
mentation, guided by experience, will aid in determining
which will be the most effective. This chapter offers a range of
experience in dealing with some of the most frequently en-
countered types of bugs. You'll go through a typical debugging
effort and learn how a programmer uses the tools available to
bring about an accurate cure in the shortest possible time.

6 Hardware Bugs 135

When you can't get a new or seldom-used program to run on
your computer, you may save wasted hours and frustration by
making sure your hardware is working properly. While this
chapter does not attempt to cover troubleshooting, it does
explain the operation of the most popular peripheral units.
This should help lead you to the source of a bug that is not in
the programming.

lebugging the Flowchart

Debugging is not always performed after the fact; time spent catching
potential bugs in the preliminary stage of program development could
mean hours of time saved later on during the actual testing and
shakedown stage.

The first step in writing a computer program is to list on paper all
those tasks the program is expected to accomplish. This helps to
organize thoughts and clarify objectives, and it gives the programmer a
direction and a goal.

FLOWCHARTING THE EXISTING PROGRAM

Drawing up a flowchart first—before composing any lines of code—is a
good way to catch potential errors in program flow, which should be
welcome news since such bugs are usually the hardest to locate.

By the same token, generating a flowchart for an already written
program is an excellent way to track down elusive bugs. The secret here
is that since flowcharts are graphic representations of the flow of the
program, bugs which can get lost in a jumble of statement numbers and

conditional branches become glaringly obvious once drawn in picture

form.
Take as an example the following program. Even though it is well

documented, it is long enough and complicated enough that unless we re-
sort to graphing it out, we might never discover the bug.

10 REM TRIP CONTROL PROGRAM FOR

20 REM GREAT CENTRAL MODEL RAILROAD

30 PRINT “WELCOME ABOARD THE GREAT CENTRAL"
40 PRINT “‘MODEL RAILWAY. HOW MANY"’

50 PRINT ‘“ROUND TRIPS TODAY?"

60 INPUT T

70 REM T IS THE TRIP COUNTER

80 REM LOOP TO DETERMINE TRAIN LOCATION
90 REM DATA PORTS ARE

100 REM 1=IN STATION

110 REM 2=NEARING SW 1 FROM INNER LOOP
120 REM 3=NEARING TIGHT TURN

130 REM 4=NEARING STRAIGHTAWAY

140 REM 5=NEARING SW 2

150 REM 6=NEARING X-ING

160 REM 7=0N X-ING

170 REM 8=NEARING SW 1 FROM OUTER LOOP
180 REM 9=NEARING STATION

190 REM 10=THROTTLE

200 REM 11=X-ING SIGNAL

210 REM 12=8Wi1

220 REM 13=8SW2

225 LET N=1

230FORI=1TOT

240 LET N=-N

250 LET A=INP(1)

260 IF A=255 THEN GOSUB 440

270 LET B=INP(2)

280 IF B=255 THEN GOSUB 530

290 LET C=INP(3)

300 IF C=255 THEN GOSUB 660

310 LET D=INP(4)

320 IF D=255 THEN GOSUB 750

330 LET E=INP(5)

340 IF E=255 THEN GOSUB 840

350 LET F=INP(6)

360 IF F=255 THEN GOSUB 950

370 LET G=INP(8)

380 IF G=255 THEN GOSUB 1080

390 LET H=INPUT(9)

400 IF H=255 THEN GOTO 1120

410 REM POSITION SENSOR ACTIVATED PUTS
420 REM ALL ONES (255) ON DATA LINES
430 GOTO 250

434 NEXT |

436 GOTO 1280

440 PRINT ““ALL ABOARD"”

450 REM WAIT FOR PASSENGERS TO BOARD
460 PAUSE 40

470 REM ACCELERATE OUT OF STATION TO SPEED 5
480 FOR J=1TO 5

490 OUT 10, J

500 PAUSE 10

510 NEXT J

520 RETURN

530 REM NEARING SW 1

540 REM PULSE SW 1, ALL ONES

550 REM PULSES SW 1 TO INSIDE CIRCLE
560 OUT 12, 255

570 REM SLOW TRAIN ONE STEP

580 OUT 10, 4

590 REM HAVE WE CLEARED SENSOR 2 YET?
600 LET R=INP(2)

610 IF R>0 THEN GOTO 600

620 REM WAIT TO CLEAR SW 1 AND ACCEL.
630 PAUSE 10

640 OUT 10, 5

650 RETURN

660 REM NEARING RIGHT TURN

670 REM CUT TRAIN SPEED TO 2

680 FOR J=1TO 3

690 LET S=INP(10)

700 LET S=S-1

710 OUT 10, S

720 PAUSE 10

730 NEXT J

740 RETURN

750 REM NEARING STRAIGHTAWAY
760 REM INCREASE SPEED TO 10

770 FOR J=1TO 8

780 LET S=INP(10)

790 LET S=S+1

800 OUT 10, S

810 PAUSE 10

820 NEXT J

830 RETURN

840 REM NEARING SW 2

850 REM SET SW FOR OUTSIDE LOOP
860 IF T<0 THEN OUT 13, 0

870 REM CUT SPEED TO 5

880 FOR J=1TO 5

890 LET S=INP(10)

900 LET S=S5-1

910 OUT 10, S

920 PAUSE 10

930 NEXT J

940 RETURN

950 REM NEARING X-ING

960 REM SET WARNING FLASHER SWITCH
970 REM PORT 11 IS X-ING FLASHER
980 LET K=1

990 IF K>0 THEN GOTO 1020

1000 REM FLASHER ON

1010 OUT 11, 255

1020 PAUSE 5

1030 LET K=-K

1040 REM TEST IF WE HAVE CLEARED X-ING
1050 LET S=INP(7)

1060 IF S>0 THEN GOTO 990

1070 RETURN

1080 REM NEARING SW 1 FROM OUTSIDE

1090 REM SET SW 1 TO OUTSIDE
1100 OUT 12,0

1110 RETURN

1120 REM NEARING STATION

1130 PRINT “NOW APPROACHING SMALLTOWN STATION"
1140 PRINT **SMALLTOWN, USA"
1150 REM SLOW TRAIN TO 1

1160 FOR J=1TO 4

1170 LET S=INP(10)

1180 LET S=S-1

1190 OUT 10, S

1200 PAUSE 10

1210 NEXT J

1220 REM CHECK WHEN TRAIN MAKES STATION
1230 LET K=INP(1)

1240 IF K=0 THEN GOTO 1230

1250 REM STOP TRAIN

1260 OUT 10, 0

1270 GOTO 434

1280 PRINT “END OF TODAY’S RUN"
1290 END

At first glance, 129 lines of code may seem overpowering; but we will
see that it only helps to point up the usefulness of flowcharting as a de-
bugging tool.

Before we begin to generate our flowchart, we can learn a number of
things about the program just by inspection. The program has been well
documented, and we will use this documentation to our advantage as we
go along.

We can tell, for instance, that the program seems to be divided into
three distinct parts. The first part consists mainly of remarks explaining
what the program is and what its assorted variables stand for. The sec-
ond part is the main program (only about 15 lines long); and the third part
consists of all those subroutines that were referenced in the main
program.

Something which the program does not list, but which would be
helpful to us as we try to visualize what is taking place, is a diagram of
the track layout. The Great Central model railroad of the referenced pro-
gram is shown schematically in Fig. 1-1.

The track has an inner route and an outer route. Both routes share a
common side, the one which includes the tight turn and the straightaway.
The inner loop passes by the station, where it must stop long enough for

5

0 (o
0o ©)
Smallt
malltown i %

Crossing SW 1 ®

FIG. 1-1. Layout of the Great Central mode] railroad.

passengers to board and disembark. The outer loop carries the train
through the manufacturing and business section of Smalltown.

The program was written to monitor and control the speed and loca-
tion of the Great Central model railroad as it alternately traverses first the
inner and then the outer loop of its right-of-way.

In order to monitor the train’s location, sensors have been set up at
various points along the track. Actuators, which respond to a signal of 0
(all zeros) or 255 (all ones) on their data lines, have been installed on both
switches and on the railroad crossing warning flashers.

We may assume that all required analog-to-digital interfacing has
been properly attended to, and as a result the only bugs (there are two)
are attributable to software.

We begin with the first part of the program, the explanatory section.
Flowcharting this (Fig. 1-2) is trivial, since the computer does not
actually perform very much.

The second part of the program, the main part, is also not difficult to
graph. Each sensor in turn is interrogated; and if the sensor transmits an
all-ones activated signal (numerical value equal to 255), then the program
branches to the appropriate subroutine before it continues the cycling
sensor interrogation.

We can draw this portion of the flowchart as shown in Fig. 1-3.

DOCUMENTING

Since we were only trying to document the block of coding beginning at
line 225 and ending at line 436, there were a few places that we were
forced to leave blank. Specifically, we know that there is a NEXT
statement to bracket the FOR statement:

PRINT PRELIMINARY
INFORMATION

INPUT NUMBER OF
TRIPS, T

!

Document ldentity of I/O Ports:

1 = Station
2 =SW 1 from inner loop
3 = Tight turn
4 = Straightaway
5=SW 2
6 = X-ing approach
7 = On X-ing
8 =SW 1 from outer loop
9 = Approaching station
10 = Throttle
11 = X-ing signal
12 = SW 1 activate
13 = SW 2 activate

FIG. 1-2. Flowcharting the explanatory segment of the railroad program.

230FORI=1TOT

434 NEXT |

But there is no statement in the block of coding we have just exam-
ined which sends the program down to line 434 so that the loop may be

INITIALIZE NV
N=1
y
I=1 YES
I>T
I=1+1
NO
[N=-N

IN
STATION

NEAR
TIGHT TURN

FIG. 1-3. Flowchart of the model railroad’s main program.

incremented. We assume, then, that unless this is the bug, statement 434
must be entered from some other point in the program. We signify this by
having a transfer symbol feed into the incrementing section of the loop
symbol.

NEAR
STRAIGHTAWAY

FIG. 1-3. (Cont’d.)

We note that the eight conditional branches themselves form a loop.
For each IF statement, if the condition is met, program flow is transferred
to a subroutine. If the first condition is not met, the next one is tried, and
so on, apparently forever. This could be a bug: the program looks as
though it is caught in an endless loop. Rather than jump to any conclu-
sions, however, we should finish our flowcharting of the complete
program.

