

AVR RISC Microcontroller
Handbook

by Claus K

X

es

Newn
Boston Oxford Johannesburg Melbourne New Delhi Singapore

L

Newnes is an imprint of Butterworth-Heinemann.
Copyright © 1998 by Butterworth—-Heinemann
& A member of the Reed Elsevier group

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written
permission of the publisher.

AVR is a registered trademark of Atmel Coporation.

Recognizing the importance of preserving what has been written, Butterworth—-Heinemann prints its books
on acid-free paper whenever possible.

GI&DAL Butterworth-Heinemann supports the efforts of American Forests and the Global ReLeaf
7000 program in its campaign for the betterment of trees, forests, and our environment.

Library of Congress Cataloging-in-Publication Data
Kiihnel, Claus, 1951-
AVR RISC microcontroller handbook / by Claus Kiihnel.
p- cm.
Includes index.
ISBN 0-7506-9963-9 (alk. paper)
1. Programmable controllers. 2. RISC microprocessors. 1. Title.
TJ223.P76K83 1998
629.8"9—dc21 98-14859
CIP

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

The publisher offers special discounts on bulk orders of this book.
For information, please contact:

Manager of Special Sales

Butterworth-Heinemann

225 Wildwood Avenue

Woburn, MA 01801-2041

Tel: 781-904-2500

Fax: 781-904-2620

For information on all Butterworth-Heinemann publications available, contact our World Wide Web
home page at: http://www.bh.com

10987654321

Printed in the United States of America

AVR RISC Microcontroller
Handbook

Preface

The AVR enhanced microcontrollers are based on a new RISC architecture
that has been developed to take advantage of semiconductor integration and
software capabilities in the 1990s. The resulting microcontrollers offer the
highest MIPS/mW capability available in the 8-bit microcontroller market.

High-level languages are rapidly becoming the standard programming
methodology for embedded microcontrollers because of improved time-to-
market and simplified maintenance support. The AVR architecture was devel-
oped together with C language experts to ensure that the hardware and software
work hand-in-hand to develop highly efficient, high-performance code.

To optimize code size, performance, and power consumption, the AVR ar-
chitecture has incorporated a large fast-access register file and fast single-
cycle instructions.

The AVR architecture supports a complete spectrum of price performance
from simple small-pin-count controllers to high-range devices with large on-
chip memories. The Harvard-style architecture directly addresses up to 8
Mbytes of data memory. The register file is dual mapped and can be addressed
as a part of the on-chip SRAM memory to enable fast context switching.

The AVR enhanced RISC microcontroller family is manufactured with
ATMEL’s low-power nonvolatile CMOS technology. The on-chip in-system-
programmable (ISP) downloadable flash memory allows the program memory
to be reprogrammed in-system through an SPI serial port or conventional
memory programmer. By combining an enhanced RISC architecture with
downloadable flash memory on the same chip, the AVR microcontroller fam-
ily offers a powerful solution to embedded control application.

This book describes the new AVR architecture and the program develop-
ment for those microcontrollers of the family available in early 1997. Some
tools from ATMEL and third-party companies help to give a first impression

ix

of the AVR microcontrollers. Thus, the evaluation of hardware and program-
ming in Assembler and C of that type of microcontroller is supported very
well. A simulator makes program verification possible without any hardware.

The development of the AVR microcontroller family by ATMEL shows
clearly that remarkable results are not limited to high-end microcontrollers
that are often the focus of consideration.

I thank ATMEL for the development of this interesting microcontroller
family, because studying these new devices and their development environ-
ment was very interesting and made writing this book enjoyable.

Finally, I wish to thank ATMEL Norway and IAR Sweden for their sup-
port of this project and my wife, Jutta, for her continued understanding dur-
ing the preparation of this book.

X Preface

Contents

Preface

ix

Some Basics 1
1.1 Architecture 1

1.2 Important Terms b5

1.3 Numbers 7

Hardware Resources of AVR Microcontrollers 9

2.1 Architectural Overview 9
2.2 The Arithmetic Logic Unit 13
2.3 Program and Data Memories 14
2.8.1 Downloadable Flash Program Memory
2.3.2 SRAM Data Memory 14
2.3.3 General-Purpose Register File 16
2.3.4 I/O Register 16
2.3.5 EEPROM Data Memory 17
2.4 Peripherals 21
2.4.1 Timer/Counter 21
2.4.2 Watchdog Timer 31
2.4.3 Serial Peripheral Interface SPI 32
2.4.4 Universal Asynchronous Receiver
and Transmitter 37
2.4.5 Analog Comparator 43
24.6 I/O Ports 48
2.5 Reset and Interrupt System 57
2.5.1 Interrupt Vector Table 57
2.5.2 Reset Sources 58
2.6 Clock 60

14

3 Handling the Hardware Resources

3.1

3.2
3.3
3.4
3.5
3.6

3.7

Memory Addressing Modes 63

3.1.1 Register Direct Addressing 63

3.1.2 I/O Direct Addressing 63

3.1.3 SRAM Direct Addressing 65

3.1.4 SRAM Indirect Addressing 65

3.1.5 Constant Addressing Using the LPM Instruction
3.1.6 Jumps and Calls 69

Instruction Set 71

Reset and Interrupt Handling 112

Watchdog Handling 115

Stack 116

Program Constructs 120

3.6.1 Conditional Branches 120

3.6.2 Program Loops 123

Defensive Programming 127

3.7.1 Refreshing Port Pins and Important Registers
3.7.2 Polling Inputs 128

63

69

127

vi

Development Tools

4.1

4.2
4.3

4.4
4.5
4.6

ATMEL AVR Assembler and Simulator 131

4.1.1 ATMEL AVR Assembler 133

4.1.2 ATMEL AVR Simulator 139

ATMEL AVR Studio 144

IAR Embedded Workbench EWA90 146

4.3.1 Summary of Available AVR Tools 148
4.3.2 IAR C Compiler 148

4.3.3 Macro-Assembler for Time-Critical Routines
4.3.4 Linker 151

4.3.5 ANSI C Libraries 151

4.3.6 IAR CWA90 Debugger/Simulator 151
4.3.7 EWA90 Demo of AVR Embedded Workbench
AVR Pascal from E-LAB Computers * 155

AVR BASIC from Silicon Studio 166
Programmer and Evaluation Boards 168

4.6.1 AVR Development Board from Atmel 169
4.6.2 ISP Starter Kit from Equinox 171

4.6.3 SIMMSTICK from Silicon Studio 173
4.6.4 Parallel Port Programmer BA1FB 175
4.6.5 Serial Port Programmer PonyProg 176

131

150

153

Contents

5 Example Programs

5.1 Example Programs in AVR Assembler
5.1.1

179
Assembler Programs for the AT90S51200

5.1.2 Assembler Programs for the AT90S8515

5.2
5.3

Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F
Appendix G
Appendix H
Appendix |

Appendix J
Appendix K

Index

Contents

Example Program in C
Example Programs in AVR BASIC
5.3.1
5.3.2 Pulse-Width Modulation and Serial Communication

261
265

Microcontroller Test 265

for the AT90S8515
Part Numbering System

266

Pin Configurations

Schematics of SIMMSTICK Modules
Register and Bit Definitions

Some Fundamentals to RS-232

Some Fundamentals to RS-422 and RS-485
8-Bit Intel Hex File Format
Decimal-to-Hex-to-ASCIlI Converter

Overview of Atmel’s Application Notes
and Software

Literature

Contacts

180
228

179

273
275
277
281
287
293
297
299

301
305
307
309

vii

Some Basics 1

In the following chapters we will use some special terms that are perhaps not
so familiar to a beginner. Some explanations should make the world of micro-
controller terms and functionality more transparent.

1.1 Architecture

All microcontrollers have more or less the same function groups. Internally
we find memory for instructions and data and a central processing unit
(CPU) for handling the program flow, manipulating the data, and controlling
the peripherals.

Figure 1-1 shows the basic function blocks in a microcontroller. The CPU
communicates with each of these function blocks (memory and peripherals).

To build a powerful microcontroller, it is important to reduce the tasks
carried out from the CPU itself and to optimize the handling of the remaining
tasks.

On the left side of Figure 1-1, peripherals are arranged. These peripherals
react with the world outside, or in more technical terms, with the process. In
modern microcontrollers, the peripherals relieve the CPU by handling the
external events separately.

In an asynchronous serial communication, for example, the CPU transmits
the character to be sent only to the serial port. The required serialization and
synchronization are performed by the serial port itself. On the other side, re-
ceiving a character is important for the CPU only when all bits are stored in
a buffer and are ready for an access of the CPU.

A port is built by a certain number of connections between the microcon-
troller and the process, often a factor of 8. It usually supports a bitwise digital
input and/or output (I/O).

PORT

Serial

Memaory

AD/DA

Figure 1-1
Microcontroller function blocks.

Serial ports communicate with other external components by means of se-
rial communication protocols. Asynchronous and synchronous serial commu-
nications must be differentiated. Both kinds of serial communication have their
own building blocks—Universal Asynchronous Receiver and Transmitter
(UART) for asynchronous communication, and Serial Peripheral Interface
(SPI) for synchronous communication. In Figure 1-1 this differentiation is not
shown.

Because the microcontroller is designed for process-related applications with
real-time character, some other function groups are implemented in a micro-
controller.

Modern microcontrollers have a fairly comfortable interrupt system. An in-
terrupt breaks the running program to process a special routine, called the in-
terrupt service routine. Some external events require an immediate reaction.
These events generate an interrupt; the whole system will be frozen, and in an
interrupt service routine the concerning event is handled before the program
goes on. If the microcontroller has to process many interrupts, an interrupt con-
troller can be helpful.

To fulfill timing conditions, microcontrollers have one or more timers
implemented. The function blocks usually work as timer and/or counter sub-
systems. In the simplest case, we have an 8-bit timer register. Its contents will
be incremented (or decremented) with each clock cycle (CLK). Any time the
value 255 (or 0) is reached, the register will overflow (or underflow) with the

2 AVR RISC Microcontroller Handbook

next clock. This overflow (or underflow) is signalized to the CPU. The actual
delay depends on the preload value.

If the preload value equals zero, then the overflow will occur after 256
clock periods. If the preload value equals 250, in an up-counter the overflow
will occur after six clock cycles. A block diagram of a simple timer is shown
in Figure 1-2.

Last but not least, we had in Figure 1-1 an AD/DA subsystem. For adaptions
to a real-world process, analog-to-digital and/or digital-to-analog converters
are often required. This is not the place to discuss all features of these more
or less complex subsystems. Some microcontrollers include such an AD/DA
subsystem or can control an external one. In other cases, only analog compara-
tors are integrated.

Thus, each peripheral has its own intelligence for handling external events
and to realize preprocessing.

On the right side of Figure 1-1, we find the microprocessor part (CPU
and memory). The memory contains program and data. CPU and memory are
connected through a bus system. This architecture—called “von Neumann”
architecture—has some drawbacks.

In Figure 1-3 instruction handling is explained. Before an instruction can
be operated, it must first be fetched from memory. Next, the program
counter must be incremented. After this incrementation, the program counter
points to the next instruction in memory. Before execution of the fetched in-
struction, it has to be decoded. As a result of this decoding, further memory
accesses for operands or addresses are possible. The instruction execution
includes arithmetic or logical operations, followed by storage of the result
back to the memory.

It seems not so difficult to understand that the handling of one instruction
requires more than one memory access. Usually, one instruction manipulates
one data byte. Therefore, several memory accesses are inconsistent with the
manipulation of one data byte by one instruction.

Preload Value

HEEEEEEE

Timer Register

Cclk—{ | | [| | | | b—>OVERFLOW

Figure 1-2
Timer.

Some Basics 3

Figure 1-3
Instruction handling.

Very large scale integration (VLSI) technology has made it possible to build
very fast CPUs. However, slow memory access times inhibits this evolution.
This fundamental problem of the von Neumann architecture is called the
“von Neumann bottleneck.”

To avoid these limitations, system designers implement some sort of cache
memory—a fast memory buffer between the main memory and the CPU.
Another, and most recent approach, is to separate the paths to the memory
system for instructions and data—the “Harvard” architecture.

The RISC design philosophy also tries to eliminate the “von Neumann bot-
tleneck” by strict limitation of memory operations by means of many internal
registers. ¢

In order to increase performance, pipelining is widely used in modern mi-
croprocessor architectures. A basic linear pipeline consists of a cascade of
processing stages.

The instruction unit in a microprocessor architecture can consist of pipeline
stages for instruction fetch, instruction decode, operand fetch, execute in-
struction, and store results. Using such a technique for preparing an execute
operation allows a new instruction to be executed every clock cycle. In this

4 AVR RISC Microcontroller Handbook

X

o

e
S3 i & S4 —>L —= S5

Figure 1-4
Instruction pipeline.

design, five different instructions are flowing simultaneously in the pipeline.
Figure 1-4 shows an instruction pipeline for all steps of the instruction han-
dling according to Figure 1-3.

All blocks in the pipeline are pure combinational circuits performing arith-
metic or logic operations over the data stream flowing through the pipeline.
The stages are separated by interface latches.

If a conditional program flow instruction changes the sequence in which the
program is executed, the prefetched instructions, addresses, and operands in
the instruction pipe are discarded. Different procedures are used to fill these
empty slots with valid information. Since the branch-type instructions have
damaging effects on the pipeline architecture performance, this is one of the
most complex design stages in modern computer architecture.

1.2 Important Terms

The following important terms will help in understanding subsequent chapters.

e Internal architecture: The concept of building the internal electronics of a
microcontroller.

* Memory: A function block for program and data storage. Here it is important
to distinguish between nonvolatile and volatile memories. Nonvolatile mem-
ories are required for storage of programs so the system does not have to be
reprogrammed after power has been off. Working variables and intermediate
results need to be stored in a memory that can be written (or programmed)
quickly and easily during system operation. It is not important to know these
data after power off. Examples of nonvolatile memories are EPROM and

Some Basics 5

OTP-ROM. The typical example of volatile memory is RAM. There are many
more types of memory, but here they are of no further interest in this book.
EPROM: Electrical programmable read-only memory. This memory is pro-
grammed by programmer equipment. Memory is erased by irradiation of the
chip with ultraviolet light through a crystal window in the ceramic package.
EPROMs are typical memories for program storage. Some microcontrollers
have EPROMs included so the CPU itself is involved in the programming
process.

OTP-ROM: One-time programmable EPROM. This type of EPROM is
one-time programmable because the package is without a crystal window
and therefore not UV erasable. Using cheap plastic packages without a
window instead of windowed ceramic packages decreases the cost signifi-
cantly. Therefore, the PROM included in a microcontroller is often an
OTP-ROM.

EEPROM: Electrical erasable and programmable read-only memory. For
reading, it is no different from a normal EPROM. Writing or, better, pro-
gramming an EEPROM differs from that for a normal EPROM completely.
The program cycle is about 10 ms for a byte or a block of bytes. Because of
the program time, the EEPROM is suitable for storage of seldom-changing
data, such as initialization or configuration data. For modern EEPROMs, 10
million program cycles are possible.

Flash memory: Nonvolatile read—write memory for program and data stor-
age. Flash memories combine EPROM programming with EEPROM-like
in-system electrical erasure. In contrast to EEPROM, a bytewise erasure is
impossible.

RAM: Random access memory, which can be programmed and read at any
time. RAMs are typical memories for data storage and are volatile.
Oscillator: A circuit that produces a constant-frequency square wave used by
the computer as a timing or sequencing reference. A microcontroller typi-
cally includes all elements of this circuit except the frequency-determining
component(s) (crystals, ceramic resonators, or RC components). In some
cases all frequency-determining components are also on-chip.

Reset circuit: Generates a reset impulse to reset the computer, in some cases.
The most important reset is the power-on reset. Switching power-on starts
the program of the microcontroller.

I/O ports: The connections to the process. Such ports are mainly bit-
programmable in both directions.

Watchdog: A counter circuit that must be reset by the running program. If the
program hangs, no watchdog reset can occur, and the watchdog counter over-
flows. As a result of this overflow, the watchdog initiates a reset and avoids
wild running of the microcontroller

AVR RISC Microcontroller Handbook

* Real-time clock/counter: A further counter circuit able to count real-time
pulses from the process side or controlled by a clock generated by the inter-
nal clock.

* Terminal: Equipment for serial I/O to the microcontroller. In most cases a PC
running a terminal program is used.

* Program installation: Installation of an user program on the hard disk of a
personal computer. The installation process includes copying the file(s),
unencrypting these when needed, generating of a program group in a Win-
dows environment, and so forth.

* Program initialization: To provide installed software with the required con-
stants and/or parameters. For example, initialization would provide baud
rate and handshake parameters for a serial communication.

e Instruction set: The whole list of instructions that will be understood by the
microcontroller.

* MSB: Most significant bit. In the 8-bit data word D7:D0 = 10101010, the
MSB is D7 =1.

* LSB: Least significant bit. In the 8-bit data word D7:D0 = 10101010, the
LSB is DO = 0.

* Pull-up resistor: A resistor that gives a Hi signal in a high-impedance circuit.

* Pull-down resistor: A resistor that gives a Lo signal in a high-impedance
circuit.

* Kbyte, Mbyte: Units of bits and bytes. “K” here does not mean a value of
1000, and “M” does not mean 1,000,000. In the binary system used in in-
formation technology, “K” stands for 2!° = 1024, and “M” for 2'0 * 210 =
1,048,576.

* PDIP: Plastic dual inline package for integrated circuits.

* SOIC: Small-outline integrated circuit.

* PLCC: Plastic J-leaded chip carrier.

1.3 Numbers

Numbers can be displayed in various formats. Usually we think of decimal
numbers. In digital systems, and also in the microcontroller world, we have to
think binary because only the two states (Lo and Hi) are allowed.

For a byte-wide number (8 bits) we get the relations among binary, decimal,
and hexadecimal number notation shown in Table 1-1.

To indicate the number system used, an index is usually used in text nota-
tion. The hexadecimal number 11y is thus equivalent to the decimal 17;,. Nor-
mally, the index for decimal numbers is not shown.

Some Basics 7

Table 1-1
Notation of numbers.

Notation

Binary Decimal Hexadecimal Notation in Assembler Notation
Number Equivalent Equivalent in Text or BASIC inC
0000 0000 0 0 Oy $0000 0x0000
0000 0001 1 1 Th $0001 0x0001
0000 0010 2 2 2y $0002 0x0002
0000 0011 3 3 34 $0003 0x0003
0000 1110 14 E = $000E 0x000E
0000 1111 15 F Fy $000F 0x000F
0001 0000 16 10 104 $0010 0x0010
0001 0001 17 11 11y $0011 0x0011
1111 1110 126 FE FEq $O0FE 0x00FE
1111 1111 127 FF FFy $00FF Ox00FF

In Assembler and BASIC, hexadecimal numbers are normally presented in
the $-format. In C, the notation of a hexadecimal number is given in a special
format. The rightmost column in Table 1-1 shows this format.

8 AVR RISC Microcontroller Handbook

