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Preface

We are very pleased to present the proceedings of the Sizth Workshop on Algo-
rithms in Bioinformatics (WABI 2006), which took place in Ziirich on September
11-13, 2006, under the auspices of the International Society for Computational
Biology (ISCB), the European Association for Theoretical Computer Science
(EATCS), and the Eidgendéssische Technische Hochschule Zirich (ETHZ).

The Workshop on Algorithms in Bioinformatics covers research on all aspects
of algorithmic work in bioinformatics. The emphasis is on discrete algorithms
that address important problems in molecular biology, that are founded on sound
models, that are computationally efficient, and that have been implemented and
tested in simulations and on real datasets. The goal is to present recent research
results, including significant work-in-progress, and to identify and explore direc-
tions of future research. Specific topics of interest include, but are not limited to:

— Exact, approximate, and machine-learning algorithms for genomics, sequence
analysis, gene and signal recognition, alignment, molecular evolution, pop-
ulation genetics and nucleotide polymorphism, structure determination or
prediction, gene expression and gene networks, proteomics, functional ge-
nomics, and drug design.

— Methods, software and dataset repositories for the development and testing
of such algorithms and their underlying models.

— High-performance approaches to computationally hard problems in bioinfor-
matics, particularly optimization problems.

A major goal of the workshop is to bring together researchers spanning the range
from abstract algorithm design to biological dataset analysis, so as to enable a
dialogue between application specialists and algorithm designers, mediated by al-
gorithm engineers and high-performance computing specialists. We believe that
such a dialogue is necessary for the progress of computational biology, inasmuch
as application specialists cannot analyze their datasets without fast and robust
algorithms and, conversely, algorithm designers cannot produce useful algorithms
without being conversant with the problems faced by biologists.

Part of this mix has been achieved for all six WABI events to date by collo-
cating WABI with the European Symposium on Algorithms (ESA), along with
other occasional conferences or workshops, so as to form the interdisciplinary
scientific meeting known as ALGO. This year, ALGO 2006 comprised the 14th
European Symposium on Algorithms (ESA 2006), the 6th Workshop on Algo-
rithms in Bioinformatics (WABI 2006), the 4th Workshop on Approximation
and Online Algorithms (WAOA 2006), the 2nd International Workshop on Pa-
rameterized and Ezact Computation (IWPEC 2006), and the 6th Workshop on
Algorithmic Methods and Models for Optimization of Railways (ATMOS 2006 ).

We received 100 submissions in response to our call for WABI 2006 and were
able to accept 36 of them, ranging from mathematical tools to experimental
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studies of approximation algorithms and reports on significant computational
analyses. Numerous biological problems are dealt with, including genetic map-
ping, sequence alignment and sequence analysis, phylogeny, comparative ge-
nomics, and protein structure. This year was the first in which WABI also called
for machine-learning approaches along with combinatorial optimization, and we
are delighted to feature five contributions from this area.

We would like to thank all authors for submitting their work to the workshop
and all the presenters and attendees for their participation. We were particularly
fortunate in enlisting the help of a very distinguished panel of researchers for our
program committee, which undoubtedly accounts for the large number of sub-
missions and the high quality of the presentations. Our heartfelt thanks go to all:

Vincent Berry (U. Montpellier)

Rita Casadio (U. di Bologna)

Phoebe Chen (Deakin U.)

Nadia El-Mabrouk (U. Montréal)
Raffaele Giancarlo (U. di Palermo)
David Gilbert (U. Glasgow)

Roderic Guigo (U. Pompeu Fabra)
Vasant Honavar (Iowa State U.)
Daniel Huson (U. Tiibingen)

Jens Lagergren (KTH Stockholm)

C. Randal Linder (U. Texas Austin)
Joao Meidanis (U. Campinas)

Satoru Miyano (Tokyo U.)

Gene W. Myers (HHMI Janelia Farm)
Luay Nakhleh (Rice U.)

Cedric Notredame (CNRS Marseilles)
Sven Rahmann (U. Bielefeld)

Knut Reinert (Freie U. Berlin)
Mikhail Roytberg (Russian Academy of Sciences)
Marie-France Sagot (U. Claude Bernard)
David Sankoff (U. Ottawa)

Joao Setubal (U. Campinas)

Adam Siepel (Cornell U.)

Jijun Tang (U. South Carolina)

Olga Troyanskaya (Princeton U.)
Alfonso Valencia (CNB-CSIC)

Jaak Vilo (Egeen Inc.)

Tandy Warnow (U. Texas Austin)
Lusheng Wang (City U. Hong Kong)
Tiffani Williams (Texas A&M U.)
Louxin Zhang (National U. Singapore)



Preface VII

We were fortunate to attract Ron Shamir, from Tel Aviv University, to ad-
dress the joint conferences on topics in computational biomedicine, along with
other distinguished speakers lecturing in more classical algorithmic areas: Erik
Demaine (Massachusetts Institute of Technology), Lisa Fleischer (IBM T.J. Wat-
son Research Labs), Lészl6 Lovéasz (E6tvés Lorand University and Microsoft
Research), and Kurt Mehlhorn (Max-Planck-Institute Saarbriicken).

Last but not least, we thank Michael Hoffman and his colleagues Angelika
Steger, Emo Welzl, and Peter Widmayer, all at ETHZ, for doing a superb job
of organizing the joint conferences.

We hope that you will consider contributing to future WA BI events, through
a submission or by participating in the workshop.

September 2006 Phillip Biicher and Bernard M.E. Moret
WABTI'06 Program Co-Chairs
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Measures of Codon Bias in Yeast, the tRNA Pairing
Index and Possible DNA Repair Mechanisms

Markus T. Friberg!, Pedro Gonnet!, Yves Barral?,
Nicol N. Schraudolph®+4, and Gaston H. Gonnet!

! Institute of Computational Science, ETH Zurich, 8092 Zurich, Switzerland
2 Institute of Biochemistry, Department of Biology, ETH Zurich, Switzerland
3 Statistical Machine Learning, National ICT Australia, Canberra ACT 2601, Australia
4 RSISE, Australian National University, Canberra ACT 0200, Australia

Abstract. Protein translation is a rapid and accurate process, which has been
optimized by evolution. Recently, it has been shown that tRNA reusage influ-
ences translation speed. We present the tRNA Pairing Index (TPI), a novel index
to measure the degree of tRNA reusage in any gene. We describe two variants
of the index, how to combine various such indices to a single one and an effi-
cient algorithm for their computation. A statistical analysis of gene expression
groups indicate that cell cycle genes have high TPI. This result is independent of
other biases like GC content and codon bias. Furthermore, we find an additional
unexpected codon bias that seems related to a context sensitive DNA repair.

1 Introduction

Protein translation is a rapid and accurate process, despite the need to discriminate be-
tween many possible incoming and competing tRNAs. One can assume that the process
has been optimized by evolution. It has been shown that tRNA availability is both a
limiting step and a regulatory parameter during translation [1,2]. Recently, through an
experiment with synthesized GFP genes, it was shown that tRNA reusage (codon or-
der) influences translation speed in yeast [3]. Here we describe the tRNA Pairing Index
(TPI), an index that measures the degree of tRNA reusage in any gene.

By a statistical analysis of the TPI and gene expression, we show that genes that
change their expression level rapidly (and thus require the most rapid translation) have
a (statistically significant) higher TPI. Specifically, genes involved in cell cycle and
DNA damage have a high TPI. These genes are regulated in the most dynamic man-
ner, i.e. they are most rapidly turned on and off in response to intra- or extra-cellular
activities.

The TPI distribution over all yeast coding sequences is biased towards positive val-
ues, indicating that there is a general tendency of tRNA reusage in the yeast genome.

Codon bias has been extensively studied previously [4,5,6,7,8,9,10]. However, to the
best of our knowledge, the problem of measuring tRNA reusage in a gene has not been
addressed before. The general analysis of codon autocorrelation suffers from the bias
that may be induced by different base frequencies in different parts of the genome. It is
known that some parts of the genome are GC-rich while other parts are GC-poor. Such

P. Biicher and B.M.E. Moret (Eds.): WABI 2006, LNBI 4175, pp. 1-11, 2006.
(© Springer-Verlag Berlin Heidelberg 2006



2 M.T. Friberg et al.

long-stretched biases induce an autocorrelation in the codons, which could be signifi-
cant. Our first version of the TPI can measure autocorrelation without being affected by
this kind of bias.

2 Methods

The TPI is an index which is computed for each protein and measures the autocorrela-
tion (positive or negative) of its codons. Depending on how the background distribution
is chosen, it is possible to make TPI completely independent of the frequencies of the
amino acids, tRNAs, codons or bases, so that it will not suffer from any of the common
sources of bias.

We measure the autocorrelation independently of everything else by analyzing the
usage of tRNA in each amino acid of a protein as a combinatorial problem on symbols.
For example, suppose that we are considering an amino acid which occurs 7 times in
the protein in question and can be translated by two different tRNAs, A and B (e.g. 3
A’s and 4 B’s). We will extract the tRNAs from our sequence and represent them as a
sequence of 7 symbols, e.g. AABABBB.

Highly autocorrelated cases are AAABBBB and BBBBAAA. A highly negatively
autocorrelated case is BABABAB. This autocorrelation can be quantified by the number
of identical pairs in the sequence or, conversely, by the number of changes C' as we read
from left to right. Notice that for a sequence of length n, the number of identical pairs
plus the number of changes is n — 1. The mathematics is completely analogous for the
number of pairs or number of changes. We call these breaks in the sequences changes,
with the thought that if a tRNA molecule is doing the translation for one particular
amino acid, when these breaks happen, this tRNA will have to be changed for another
molecule. The first two examples have 1 change each, the last example has 6 changes.
The TPI measures how high the actual number of pairs are, or how low C is, compared
to all possible permutations of the sequence of tRNAs.

We present two different background distributions: one (TPI;) based on codon fre-
quencies given by the actual gene/genome under study, i.e. all possible orders consid-
ered equally likely (2.1) and another one (TPI3) based on variable codon frequencies
extracted from the entire genome (2.3).

2.1 TPI;: Constant Codon Frequencies

Computation of the Probability of the Number of Changes. We will now describe
the function to compute the probability and cumulative distribution of a given number
of changes z.

It is easy to observe that the probability of the number of changes C(z, n1, na, ..., ng)
does not depend on what the symbols are, but rather on how many symbols there are
of each kind (nj,na,...,ng). C is a (symmetric) function of the number of each kind
of different symbols. It is difficult to write a recursion based on C, so instead we will
base its computation on another function, called C,., which does the recursive part of
the computation. Cy.(z, n1, na, ..., ng) assumes that we are not at the beginning of the
sequence, but rather that the last symbol observed is known (Fig. 1). To identify this
known symbol (all symbols are otherwise equivalent), we will make it the first of the
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C(x,4,3)

(2 [slala]n[=[=]

(probability of x changes with 4 and 3 symbols)

Cr(x,4,3)

rooo
A

I===ua

ale|afaja]e]a]

(probability of x changes with 4 and 3 when
the previous symbol is of the first kind)

Fig.1. C and C,

arguments. Our function C. assumes that it is called with a symbol of the first class
preceding the rest of the symbols (Fig. 1). We explain C,. for k = 2 symbols in detail.

0 ifny <0orng <Oorx<Qorz>ny+ns

Cp(z,n1,m2) = { 1 if ng =ny = 0 (z must be 0) (1)
m(nlcr(a:,nl —1,n2) + n2Cr(z — 1,n0 — 1,mn1))

The first symbol is either from the class of n; (no change) or from the class of ng, in
which case the preceding symbol now is of the second class and we invert the argu-
ments: Cr(z — 1,ny — 1,nl).

The extension of this function to higher £ is simple. Supplementary material (http://
www.biorecipes.com/TPI/appendix/Cr.M) shows a production quality version of this
procedure which takes into account more refined border conditions. C(z, n1,ng) can
be expressed in two forms in terms of C,. First, if we allow an arbitrary number of
symbols we use

C(z,n1,n2) = Cr(z + 1,[0,n1,n2)) 2)

i.e., we create an artificial first symbol (of which we have 0 left) and allow for one more
change. Else we can expand based on the first symbol:

n
C(z,n1,n9) = _nl—c'r(manl —1,ng) + 2

——Cr(z,ne — 1,n 3
ny + ng ni + ng ()2 ) 0

The code for C, as written above, is exponential. We can use dynamic programming,
or we could use something equivalent to option remember in Maple [11] to make it
polynomial in the product of the n;.

To estimate how rare a given number of changes is, we need to compute its cumula-
tive distribution. Since the distribution is over the integers, we will take the cumulative
distribution which adds one half of the probability at the point.

z—1

; 1
Ccurn.(xynl’n27 -~-7nk) = 20(7'7”17”27 seey nk) =t 50(1‘7’”17 nz, "‘7nk) (4)
=0

Our TPl is 1 — 2C .y, which is more intuitive to use than Cqp,.
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Expected Values and Moments of the Number of Changes. The expected value of
the number of changes can be expressed in terms of the symmetric functions S; and S
on the arguments:

0o 52 _S k )
i = Zz x C(i,n1,n2, ..., Nk) = _15_3 where S; = Zn; 5

i=1 L j=1
The derivation of this formula is not trivial in its general form (for an arbitrary k).
However if we observe that all the probabilities are sums of binomial coefficients, then
we can conclude that the result (expected value or higher moments) must be a poly-
nomial expression divided an appropriate descending factorial. Since all the moments
are symmetric in all the arguments, the moments must be functions of the symmet-
ric polynomials derived from the n;. Hence by symbolic interpolation we can deter-
mine all the moments in a much easier (and safer) way. Of interest are the expected
value and the variance. This is because we will attempt a normal approximation to the

distribution.

o 5185 — 83 — 28,53 + 5252 + S2
o 5 ol N2 > — 12 ! 4 - :
pa =36 — 2O, m s, ) G -1 ©

g=1

Unfortunately, despite the simplicity of the formulas resulting from this approach, they
do not resolve our problem completely. The normal approximation gives a good ap-
proximation of the cumulative distribution around the average (for large values of S;)
and very good approximations when min(n;) is high. However, it gives poor approxi-
mations at the tails when some of the n; are small, which is an important case.

Computing the Distribution of C in Practice. The recursion in C,., although sim-
ple, swaps its arguments, which makes it almost impossible to handle with the standard
techniques. Even dynamic programming becomes very difficult to express. In this sec-
tion we find a mechanism to rewrite the recursion in a way that the argument order is
maintained.

Since the function is totally symmetric in its arguments (and C;. is totally symmetric
in its arguments but the first) we can sort the arguments in increasing order guarantee-
ing a time of O(njns....nk). This makes the recursion marginally acceptable for real
problems (for yeast £ < 4 and for most other genomes k£ < 5). This ordering is partly
ruined by the swapping of arguments in the recursion (1). Each recursive call to C,. uses
a different argument as second argument.

To resolve this problem we find recursions which (while maybe more complicated)
do not jumble the arguments. We can illustrate this by doing the transformation on the
simplest recursion, £ = 2. For further simplicity, we will use the auxiliary function

H(z,n1,n2) = Cp(x,n1,n2) (11: nz) As expected, the recursion on H(z,ny,n9) is
1
significantly simpler.
H(:I:’ 7117"2) = H(x» ny — 1.77,2) + H("l: - 17”2 - 1’ Tll) (7)

We now apply this formula to the shifted arguments
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—H(z,n1,no —1)=—H(z,n1 —1,ny— 1) — H(z — 1,n2 — 2,n1) ®)

H(zx—1,nys—1,m)=H(@x—1,ne—2,m)+H(@x—2,n1 —1,npo—1) (9)

Adding these three equations results in

H(z,ni,n2) = H(z,n; —1,n2) + H(z,n1,ne — 1) — H(z,n; — 1,ns — 1)+
H(z—2,n —1,ny—1)

(10)
Notice that we have managed to obtain a recursion for which all the arguments
(n1,n2) are in the same order. The new recursion with four terms instead of two
is a bit more complicated, but this is an insignificant cost when we observe that in
this form it is easy to write a recursive program to compute it. The computation can
be done over the space of n;zng for increasing x, having to keep two copies of the
older H.

Transformations for up to & = 5 were obtained by doing a Knuth-Bendix style
elimination procedure among all shifts of the basic recurrence. This was done in Maple
and required some careful and extensive manipulations. Table 1 shows the summary of
the results.In the supplementary material, http: //www.biorecipes.com/TPI/
appendix/recursions, we show the recursions for kK = 2 to £k = 5. With these
recursions it was possible to write a C program that can compute all the TPI values for a
genome like yeast in about 6 hours. Previous attempts failed after weeks of computing
in very large machines.

Table 1. Recursions

k|terms|eq. used|max shift z|max shift ny, na, ...

2| 4 3 -2 -1
3| 12 37 -3 -1
4| 32 657 -4 -1
5 80 | 19125 -5 -1

Analytic Solution for two Symbols. The case with two symbols can be resolved ex-
plicitly (unfortunately, we were not able to find closed forms for higher k, and conjec-
ture that no simple forms exist). Theorem:

H(z,n1,n) = ([QNZD (11)
2 2

This is easily proved by plugging the recursion that defines H(x, n1, n2) and separating
the case when z is even and when z is odd. For example if x is even then z = 2w and
the recursion becomes:

3oty ol [y Gy Gy (12)



