_» Polymer Foams
w.aa Handbook
°Y b 4 Engineeringand

Biomechanics Applications
and Design Guide

= Nigel Mills

- I|®



Polymer Foams Handbook

Engineering and Biomechanics Applications
and Design Guide

N J Mills

k N AMSTERDAM + BOSTON + HEIDELBERG * LONDON « NEW YORK « OXFORD
S LOXLEE  PARIS + SAN DIEGO « SAN FRANCISCO * SINGAPORE * SYDNEY * TOKYO
ELSEVIER Butterworth-Heinemann is an imprint of Elsevier



Butterworth-Heinemann is an imprint of Elsevier
Linacre House, Jordan Hill, Oxford OX2 8DP
30 Corporate Drive, Suite 400, Burlington, MA 01803

First edition 2007

Copyright © 2007, Nigel Mills. Published by Elsevier Ltd. All rights reserved

The right of Nigel Mills to be identified as the author of this work has been
asserted in accordance with the Copyright, Designs and Patents Act 1988

No part of this publication may be reproduced, stored in a retrieval system
or transmitted in any form or by any means electronic, mechanical, photocopying,
recording or otherwise without the prior written permission of the publisher

Permissions may be sought directly from Elsevier’s Science & Technology Rights
Department in Oxford, UK; phone: (+44) (0) 1865 843830; fax: (+44) (0) 1865 853333;
e-mail: permissions@elsevier.com. Alternatively you can submit your request on-line by
visiting the Elsevier web site at http://elsevier.com/locate/permissions, and selecting
Obtaining permission to use Elsevier material

Notice

No responsibility is assumed by the publisher for any injury and/or damage to persons
or property as a matter of products liability, negligence or otherwise, or from any use
or operation of any methods, products, instructions or ideas contained in the material
herein. Because of rapid advances in the medical sciences, in particular, independent
verification of diagnoses and drug dosages should be made

British Library Cataloguing in Publication Data
Mills, N. J. (Nigel J.)
Polymer foams handbook : engineering and biomechanics
applications and design guide
1. Plastic foams
I. Title
668.4'93

Library of Congress Number: 2006939882

ISBN-13: 978-0-7506-8069-1
ISBN-10: 0-7506-8069-5

For information on all Butterworth-Heinemann publications visit
our web site at http://books.elsevier.com

Typeset by Charon Tec Ltd (A Macmillan Company), Chennai, India
www.charontec.com
Printed and bound in Great Britain

07 08 09 10 109876 54321

Working together to grow
libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

1 QI BOOK AID : - :
ELSEVIER BOOKAID oo Foundation




Foreword

This book explores the applications of polymer foams. It attempts to explain their
mechanical properties in terms of polymer properties and the foam microstructure.
The first chapter introduces geometrical concepts that are used throughout the book.
The subsequent three chapters deal separately with the microstructure and processing
of polyurethane foams, foamed thermoplastics, and bead-foam mouldings. Their dif-
ferent processing routes and microstructures mean that a combined treatment would
be confusing. Surface tension may mainly determine the microstructure of PU foams,
but high-stress melt flow is more important for foamed thermoplastics. Concepts in
the mechanical property area are introduced in Chapter § before Chapter 6 covers
finite element analysis (FEA) for the complex geometries of many foam products.

Case studies are included for two reasons. Firstly, they are increasingly used to
motivate students to study the relevant theory and to understand major industries; a
variety of activities such as literature searches and product dismantling can be used as
the basis for student presentations. Secondly, specialised foam-based industries tend to
remain compartmentalised, but could learn a lot from each other. Thus the areas of
foam seating, protective packaging, safety helmets are included; each is associated
with one or more theory chapters. There are two strategies for reading this book. One
is to read the case studies alone, and use the computer programs to illustrate the foam
selection and properties. The other is to read a case study together with the appropri-
ate background theory on the mechanics and materials science. If the reader’s back-
ground is weak in polymer materials science, it is recommended that he/she should
read a general textbook, such as the authors Plastics.

This book is intended to compliment previous books with different approaches.
Mustin (1968)! viewed foam packaging from the military engineering viewpoint; how
to design packaging so that supplies could survive air-drops. Hilyard’s (1982)% multi-
author book reviewed many areas of mechanical properties, but concentrated on
polyurethane systems. Gibson and Ashby’s (1988)* book, which surveyed all cellular
solids, contains many interesting ideas. However it gives the impression that the
mechanical properties of foams are fully explained. It uses a dimensional approach to
avoid full analyses of deformation, which are now available. Some of the proposed
deformation mechanisms are less important than suggested, and some are not observed
in polymer foams. Hilyard and Cunningham’s (1994)* book contains a good review of
the micromechanics of foam elasticity by Kraynik and Warren, and useful chapters on
the mechanisms of heat transfer and gas diffusion. Finally Klempner and Sendijarevic
(2004)® book reviews the chemistry and processing of all the major polymer families.

This book covers the principles which provide a framework for foam develop-
ments. It has become easy to search and access literature electronically, but the user
should be aware of the advantage and shortcomings of databases such as Google
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Scholar, Science Direct, and RAPRA databases in keeping their coverage of the foam
literature up to date.

Writing this book has been a voyage of discovery. I am grateful to the efforts of col-
laborators such as Adam Gilchrist and Miguel Rodriguez-Perez, and to PhD students,
in particular Hanzing Zhu, Stephanie Ankrah, Raquel Verdejo, Yago Masso-Moreu,
Iona Lyn, and Catherine Fitzgerald.

Nigel Mills
September 2006
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Foam Technology, 2nd Edn., Hanser, Munich.
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