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Preface

In this monograph we discuss solutions of ionic polymers and dispersions of
clectrically charged colloidal particles. These substances dynamically dissoci-
ate and associate into macroions and counterions in polar solvents such as
water. Thus, they have two facets: they behave as clectrolyvtes like NaCl and
as high polymers.

The outstanding feature of these systems is the electrostatic interaction
between solutes. This interaction is of long-range nature and results in var-
ious phenomena, which has been unknown for non-ionic polymer solutions.
The colloidal particles help us analyze ionic polymer solutions, which are not
casy to understand. When the particles are large enough, they can he “seen”™
under the microscope. As will be shown in Chap. 4, Brownian motion, crys-
tallization, lattice defects, lattice vibration and so on can be visualized by
using colloidal particles. Such direct information of colloidal systems can pro-
vide powerful suggestions to our understanding of “invisible” ionic polymers
in solutions and condensed matter in general as well. I this monograph, we
discuss recent investigations on the structure formation of iouic polywmers and
colloidal particles at low concentrations and its related topics.

In gases, the distribution of molecules and atoms is “random”, whereas
geometric regularity characterizes solid crystals. In liquids and solutions, a
short-range order exists, but a longer intermediate order is also possible. A
long-range order in the form of clusters has been reported to exist over 50
years for colloidal systems and about 20 years for ionic polymers. This general
phenomenon has its origin in the interactions between solutes and appears
to correspond to thermodynamic equilibrium. Fundamental understanding of
this ubiquitous phenomenon is an outstanding scientific challenge.

In Chap. 1, we first consider the gencral features of the structure of ionic
polymer solutions and of the interactions therein as well as the principles
of the methods to be applied. We then proceed, in Chap. 2, to the discus-
sion of existing theoretical frameworks such as the Dehye-Hiickel theory of
strong electrolytes [Debye PJW, Hiickel E (1923) Physik Z 24:185] and the
Derjaguin-Landan-Verwey-Overbeck (DLVO) theory of the interactions be-
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tween colloidal particles [Verwey EJW, Overbeek JThG (1948) Theory of the
stability of lyophobic colloids. Elsevier, New York]. On the basis of these the-
orctical foundations, recent cxperimental observations are reviewed. We deal
with flexible ionic polymer solutions in Chap. 3 and colloidal dispersions in
Chap. 4, in which agreement with and discrepancy fromn the existing theo-
ries are dissected. In Chap. 5 the Kikuchi-Kossel method for the structural
analysis of colloidal crystals is considered. In Chap. 6. a mean field theory
for spherical macroions is derived, and a long-range attraction is shown to
exist, in addition to the purely repulsive interaction presented by the DINVO
theory, between similarly charged macroions. Discussion is given in Chap. 7
on the pros and cons of the widely accepted interpretation of the solution
viscosity of flexible ionic polymers, in other words, of the rod-model of these
polymers. Specifically, we reconsider the merits of the “rod-model” of Hexi-
ble ionic polymers, which is prevalent in the polyelectrolyte literature. The
recent results of computer simulations are discussed in Chap. 8, in which the
purely repulsive DLVO potential and the new potential containing long-range
attraction obtained in Chap. 6 are compared under the same conditions in the
Monte-Carlo simulation, demonstrating that the observed discrepancy from
the DLVO theory is accounted for by the attraction. In the last chapter, some
colloidal phenomena, which have been accounted for by the DLVO poten-
tial, are shown to be explainable also by using the new potential. The logical
problem in the previous arguments in favor of the DLVO potential or the
repulsion-only assumption is therchy clarified.

The present monograph is characterized by an wiconventional point of
view of charged colloidal dispersions based on three tenets. First, it is claimed
that an electrostatic long-range weak attraction is operative, in addition to
the widely recognized short-range strong repulsion, between similarly charged
macrions. According to the Coulomb law, cations repel other cations. This
raises the question: Is the ahove claim then incompatible with the Coulomb
law? Definitely not. If we can prepare a solution of cations only, they ro-
pel naturally each other. In real solutions or dispersions, however, cationic
species have to coexist with their oppositely charged species to maintain elec-
tric neutrality as a whole. Therefore, if we pay attention to similarly charged
macroions only, repulsion is observed to be in action. but in reality, we can-
not ignore their oppositely charged counterions, which attract the macroions.
There is a possibility that, when this attraction overwhelms the repulsion be-
tween the macroions, two macroions are pulled together. This very point is
clearly explained by Feymman [Feynman RP, Leighton RB, Sands M (1965)
The Feynman lecture on phiysics. Addison-Wesley, Reading, MA, vol 1, p.2 3]
as follows:

“Suppose that we have two unlikes that attract each other. ¢ plus and
a minus, and that they stick very close together. Suppose that we have
another charge some distance away. Would it feel any atiraction? It
would feel practically none ... On the other hand, if we get very
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close with the extra charge, attraction arises, because the repulsion of
likes and attraction of unlikes will tend to bring unlikes closer together
and push likes farther apart. Then the repulsion will be less than the
attraction.”

The second central hypothesis is that we accept the mean-field approach to
describe macroionic systems on the basis of the Poisson-Boltzmann equation,
as done also for the Debye-Hiickel theory and the DLVO theory. Our calcu-
lations depart from the DLVO theory in indicating the existence of a long-
range attraction between similarly charged macroions, based on the physical
picture described above. We do not discuss other rationalizations of this at-
traction that have been recently reported. Though detailed discussion is given
in Chap. 2, it was demonstrated in the framework of the mean field approach
[Fowler RH, Guggenheim EA (1939) Statistical thermodynamiecs. Cambridge
University Press, London, Chap. 9; McQaurrie DA (1976) Statistical mechan-
ics. Harper Collins Publishers, New York, Chap. 15] that Helmholtz and Gibbs
free energies were not generally equal for ionic solutions and that this differ-
ence was due to interionic interaction. In solutions of simple ions, which are
not highly charged, the interaction may be not so intense. For highly charged
colloidal particles, the two frec cnergies have to be carefully distinguished. In
the DLVO theory, however, the two free encrgies are assumed to be cqual. As
will be discussed in Chap. 6. the mean field approach leads to the conclusion
that the intermacroion interaction is repulsive in the level of the Helmholtz
free energy, as is commonly recognized. When we proceed to the Gibbs free
energy level, the mean ficld approach shows the presence of an attraction be-
tween nacroions. The basic theme of this monograph is to discuss whether
the assumption of equal free energies is correct or not for macroionic systemns.

Finally, our discussion is consciously limited to structure formation in
macroionic systems. In our view, systematic discussion of fundamental physico-
chemiical properties of macroionic solutions or dispersions cannot be wnder-
taken, because the corresponding experimental data are still scanty.

The work to be described in the present monograph is due to outstand-
ing effort and capability of our coworkers, to whom our nost sincere thanks
arc dedicated. It is our privilege to thank the following scientists, who played
central roles in their respective fields, gave us pertinent comments, and read
and corrected the manuscripts: Professor Kensaku Ito (Toyama University),
Dr. Toshiki Konishi (Central Laboratory, Rengo Co., Ltd.). Professor Hideki
Matsuoka (Kyoto University), Dr. Tadatomi Shinohara (Kyoto Sangyo Uni-
versity), Dr. B.V.R. Tata (Indira Gandhi Centre for Atomic Rescarch), Profes-
sor Junpei Yamanaka (Nagoya City University), Dr. Hiroshi Yoshida (Hitachi
Laboratory), and Professor Tsuyoshi Yoshivaina (Kyoto Sangyo University).
Helpful commeuts on Chap. 8 were received from Professor Mitsunori Fukuda
(Hyogo University of Education).
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The following scientists were very gencrous in reading and correcting the
manuscript: Dr. Jack Douglass, Professor Robert M. Fitch, Professor Kenneth
S. Schmitz, and Dr. M. Smalley.

Last but not least, our sincere thanks go to Professor Helmut Ringsdorf,
University of Mainz, and Professor Raj Rajagopalan, University of Florida,
for their kind assistance in publication and to Dr. Marion Hertel, Springer
Verlag, for her patience.

Kyoto Japan Norio Ise
January 2005 Tkuo S. Sogami
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1

Introduction

1.1 Macroionic Systems and the Scope of the Book

In the present monograph, we will discuss ionic polymer solutions and colloidal
dispersions. When these substances are dissolved into a solvent, they produce
ionic species having large molecular weights and their counterions. We know a,
variety of naturally occurring ionic polymers and chemically synthesized com-
pounds. Examples of the former are nucleic acids and some proteins, which
play an important role in biological systems. Examples of synthetic ionic poly-
mers are polyacrylic acid (PAA), polystyrenesulfonic acid (PSS) and polyal-
lylamine (PAAm).

PAA is a high polymer, in which m acrylic acid molecules CH,=CH(COOH)
are linearly polymerized by covalent bonds. The number m is called the degree
of polymerization and is usually of the order of 10%. When PAA is dissolved
in a dissociating solvent like water, anionic macroions and counterions are
produced. In the following scheme, the counterions are protons but they may
be metal cations such as Na™t:

—~CH,; — CH—- —~CH; — CH-
l — | + mHAT
COOH m COO~ m
PAA PAA anion Counterions .

PAAm is a cationic polymer and dissociates into PAAm cations and anionic
counterions as shown below:
—CH; — CH- —CH; — CH--
l +mHCl — | +mCl™
CH, —NHy | CH, — NHF

PAAm PAAm cation Counterions .
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In the case of NaCl, it dissociates into Nat and Cl~, which both have low
molecular weights. On the other hand, PAA anions and PAAm cations have
high molecular weights. If m is 103, one polymer ion (macroion) has an analyt-
ical charge number Z, of 10°, which is exceedingly larger than 1 for Nat. Since
the interionic interaction is proportional to the square of the charge number,
the physical properties of macroionic solutions are largely different from those
of simple salt solutions. Furthermore, the macroionic solutions behave in ways
considerably different from non-ionic polymer solutions. This basic point was
correctly realized by Trommsdorf and Staudinger [1]. They noticed in 1931
that the viscosity of aqueous solutions of metal salts of PAA was much higher
than that of non-ionic polymers, attributed it to a kind of structure formation
by electrostatic interaction and made the following statement:

Like in NoCl solutions - - -, PAA ions are surrounded by Nat in solu-
tions of sodium salt of polyacrylic acid, and Na© interacts with PAA
anions. As the consequence, the relative position of PAA anions is
fized. This is a kind of structure formation. This structure is distorted
in flow, so that the solution viscosity is increased.

These molecules are flexible in solution because of the free rotation around
C-C bonds in the main chain. They cannot assume a definite conformation
or shape. Even if they are stretched out into rods, the end-to-end distance is
about 100 nm, so that their shapes and the distribution in solution cannot be
directly observed.

In order to confirm the properties indirectly inferred, we avail ourselves of
colloidal particles, which are so large that they can be “seen” by microscope.
We study the dynamics and distribution of particles in their dispersions. The
colloid field was called “Die Welt der Vernachlissigten Dimensionen ” (2| and
was one of the fields which could not be studied smoothly. Recent technical
developments, however, have made it possible to control the particle diameter,
its distribution, and the charge number. As a result, it is now possible to
study the behavior of well-defined particles in dispersions in real time. The
microscopic information thus obtained is expected to provide support to the
indirectly derived conclusion on the behavior of “invisible”}, flexible ionic
polymers in solution.

In this monograph our discussion will be limited to a recent topic, namely
structure formation in dilute solutions or dispersions. We imply by the struc-
ture formation that solute ions or colloidal particles form a more or less
three-dimensionally regular distribution, though not in the solid state. Such
a structure was anticipated in an early stage of the investigation of ionic
systems. For example, in the case of simple electrolyte solutions, Ghosh as-
sumed lattice-like ionic arrangements to calculate the osmotic coefficient (the
activity coefficient of the solvent) [3]. With such an assumption, the interi-
onic distance is inversely proportional to the cube-root of the concentration.
On the other hand, physico-chemical properties at low concentrations are ex-
perimentally found to show square-root relationships. This concentration de-
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pendence could be accounted for by the Debye-Hiickel (DH) theory of strong
electrolytes [4]. When the concentration is raised, however, the cube-root de-
pendence is found experimentally [5]. For ionic polymer solutions, a cube-root
law is also experimentally observed [6]. In early theoretical treatments of ionic
polymer solutions, some sorts of lattice-like distribution of rodlike macroions
were explicitly or implicitly assumed [7-11].

Regardless of whether the geometrical model of infinitely long rods is re-
alistic or not, we need to mention that, like in the case of Ghash, space-filling
ordered arrangements were assumed in these theories. In other words, the en-
tire solution was assumed to be uniformly covered by the regular arrangement.
This is what we call the one-state structure in the present monograph. Such
a structure can be easily accepted by invoking repulsive interaction between
similarly charged macroions which are confined by closed container walls.

What we wish to emphasize in the present monograph is not such a uni-
form distribution of macroions, however. Instead, we pay attention to localized,
ordered structures of ionic polymers or particles, or self-sustaining structures
without the help of walls. As a result of the existence of such structures, the
systems are microscopically inhomogeneous. Although the existence of this
inhomogeneity is surprising in condensed systems, it has been inferred for
flexible ionic polymer solutions by scattering experiments (Chap. 3) and “vi-
sualized” for colloidal dispersions (Chap. 4). These experimental observations
are difficult to explain when we admit the existence of repulsion only or if
we assume no interaction between macroions [11]. The observations led the
present authors to accept an attraction between macroions albeit similarly
charged. In the present monograph, we wish to describe and understand the
microscopic inhomogeneity in macroionic systems from experimental and the-
oretical points of view, while we try not to be redundant with some recent
publications [12-15].

1.2 Principles for Structure Analysis on Macroionic
Systems

The structure of a macroionic system means the average configuration of
macroionic solutes in the dispersion. Analysis of such structures is made by us-
ing diffraction and scattering methods with visible light, X-rays and neutrons.
"The macroionic solutes forming an ordered configuration give rise to coherent
contributions to diffraction and scattering amplitudes. By contrast, contribu-
tions from the solvent molecules associated always with random phases due
to thermal motion are cancelled out on average.

Electromagnetic waves of visible light and X-rays being incident into so-
lutions are scattered by charged constituents of atoms and molecules, viz,
electrons and atomic nuclei. As shown below, the scattering effect of electro-
magnetic waves by charged particles is proportional to the inverse-square of
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the mass of the particle (See (1.10) and (1.13)). Accordingly the scattering ef-
fects from atomic nuclei are negligibly small. The scattering effect of a proton
(the lightest atomic nucleus) is smaller than that of an electron by a factor
4.0x 108, since the ratio of masses of the proton and electron is about 2.0x103.
Therefore, the structure analysis of macroionic solution by electromagnetic
waves observes electron distributions in macromolecules in the solution.

To investigate colloidal dispersions, in which the size of the particles is
approximately of the order of visible light, the optical microscope is useful in
addition to laser diffraction analysis. In particular, the method of optical mi-
croscopy can be used to observe both random motion and ordering formation
of colloidal particles.

If the macroions do not include atoms with magnetic moments, neutrons
can penetrate a cloud of electrons and interact directly with atomic nuclei
through the strong nuclear force. Accordingly, by observing scattering cross
sections of neutrons, it is possible to obtain information concerning the distri-
bution of atomic nuclei of solutes. To make structural analysis of macroionic
systems by neutron scattering and diffraction, we must use a facility where
cold neutrons and an apparatus with a long camera length are available.

In this section, we explain basic concepts and theories that are necessary to
understand scattering and diffraction of electromagnetic waves using a simple
model. States of electrons bound in macromolecules and their interactions with
electromagnetic waves must be described, respectively, by quantum mechanics
and quantum field theory [16-18] in principle. However, it is well known that a
simple oscillator model for bound electrons, i.e., the Thomson model, is effec-
tive for the structure analysis of matter. In this section we use the Thomson
model with modification to explain the scattering of electromagnetic waves
by bound electrons.

In the Thomson model, the electron is assumed to be bound around an
equilibrium position and make a simple harmonic oscillation with a proper
frequency. The electron which is accelerated by external electromagnetic waves
executes a forced oscillation and emits electromagnetic waves. The motion of
the electron is described by Newton's equations of motion. We formulate the
scattering theory of electromagnetic waves by bound electrons in the classical
Thomson model by using minimum information on the quantum distributions
of electrons inside atoms and molecules.

1.2.1 Electromagnetic Waves Emitted by Accelerated Electrons

Suppose that one electron around the equilibrium point E in a solute molecule
is accelerated by electromagnetic waves. We observe expanding electromag-
netic waves emitted by the electron at the point P on a spherical surface which
has its origin at E and a sufficiently large radius R.

Note that the electromagnetic wave emitted at the time 7 = ¢t — R/c from
the point  is observed at the time ¢ at the point P where ¢ is the speed of
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light. The observed electric and magnetic fields, E and B, are calculated to
be el
E:—cﬁ'zﬁnx [n x a(T)] (1.1)
and
B=nxE (1.2)

where a(7} is the acceleration of the electron at 7 and n is the unit vector
for the direction from E to P. Derivation of these equations is explained in
standard textbooks on electromagnetism [19]. The Poynting vector which rep-
resents the energy flux carried by the electromagnetic field per unit time is
given by

¢ c ez 1

= = 2n = — n. 1.3
S 47FEXB 4WE'n, P |nxa(r)|*n (1.3)

Then, the electromagnetic energy dP passing through the solid angle d{? in
unit time is given by the Larmor formula [19]

ez

— (. 210 —
P = (n- S)R*N = ——

| x a(r) |2 de2. (1.4)

1.2.2 The Modified Thomson Model

Let us assume that an electron with mass m executes a harmonic oscillation
with proper frequency wg around an equilibrium position. The forced oscil-
lation of the electron by an external electric field is described by Newton’s
equation of motion,

Suppose that a monochromatic electromagnetic wave being incident into
a macroionic dispersion has a wavelength \ inside the dispersion, a frequency
v and a unit vector ng representing the direction of propagation. Choosing an
origin O inside the dispersion, we express the equilibrium position E by a vec-
tor r and a displacement from E by 5. In the complex number representation,
the incident electric field at the time ¢ at E is expressed by

EO (7,’ t) — EO eiko-r—iwt — GOEO eik:o-'r-iwt (15)

where kg = (27/A)ng is the wave vector and w = 27v is the angular frequency.
Here the electric field is decomposed as Eq = Eyey with Ey the strength of
the electric field and €y the polarization vector. As is well known, observed
quantities must be calculated by taking real parts in the complex number
representation.

The electron around the equilibrium position E is driven by the external
electric field Ey(r,t) in (1.5) to make a forced oscillation described by the
equation

d?n

d . A
mw = —mwg'n — m'yag — eEyegetforivt (1.6)
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Here, the velocity of the electron is assumed to be so small compared with
the speed of light that effects of the magnetic component of the Lorentz force
are negligible. On the right-hand side of this equation, the first and second
terms represent, respectively, the elastic force with spring constant mw? and
the damping factor associated with emission of radiation. The third term
expresses the external force by the incident wave, and its phase factor e'ko™
plays a crucial role in analyzing interference and diffraction of the scattered
electromagnetic field.

It is crucial to recognize that the space part kq - 7 of the phase factor in
(1.6) is independent of the time variable. Namely, the displacement vector r
of the equilibrium point E is assumed not to depend on ¢. Otherwise (1.6)
becomes a highly nonlinear differential equation with respect to ¢, which is
hard to solve. As a matter of fact, the existence of the static equilibrium
position E is a basic prerequisite for the Thomson model of the atom in which
electrons are assumed to execute oscillatory motion around such equilibrium
positions inside a sphere with positive charges. However, this basic postulate
was disproved by the Earnshew theorem insisting that “A charged particle
cannot have an equilibrium point in a static electric field ™ [20).

The Earnshaw theorem is readily proved by the following argument. Sup-
pose that a charged particle takes an equilibrium position in a static electric
field. Then, such a position must be on the top (at the bottom) of the elec-
tric potential, and accordingly the second derivative of the electric potential
takes positive (negative) values in an infinitesimal region surrounding the po-
sition. This implies that the divergence of the electric field strength which is
the gradient of the electric potential is non-vanishing at the position. Con-
sequently, owing to the Gauss theorem in (2.2) in Sect. 2.2, the equilibrium
position for the particle must already be occupied by another charge. This is
a contradiction.

Rutherford who had discovered atomic nuclei proposed a dynamical model
of the atom, in place of the Thomson model, where electrons revolve around
the nucleus. This model is free from criticism by the Earnshaw theorem. How-
ever, the new dynamical model was also doomed to suffer difficulty. As de-
scribed in Sect. 1.2.1, the acceleration causes the charged particle to emit
electromagnetic radiation. Accordingly the revolving electrons inside the atom
have to fall into the nucleus in 107! second by losing their energy by radi-
ation. This difficulty of the Rutherford model could be resolved only by the
theory of quantum mechanics in which the stationary states of electrons are
described by the new concept of quantum probabilistic distribution.

The advent of quantum mechanics has partially and effectively revived
the once-denied Thomson model of the oscillating electron for electromagnetic
radiation. In the modified Thomson model, the acceleration mechanism of the
electron around the equilibrium position E is described by the Newtonian
equation (1.6) provided that quantum mechanics is allowed to describe the
position E by a probabilistic distribution inside an atom. Namely, we calculate
first the electromagnetic waves emitted by the accelerated electron by solving



