KNOWIEERDGE
SYSTEMS
DESIGN

I¥LITLTET

il

Knowledge Systems
Design

John K. Debenham

School of Computing Sciences
University of Technology, Sydney

PRENTICE HALL

New York London Toronto Sydney Tokyo

© 1989 by Prentice Hall of Australia Pty Lid

All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted in any form or by any means,

electronic, mechanical, photocopying, recording, or otherwise, without the
written permission of the publisher.

Printed and bound in Australia by
Impact Printing, Brunswick, Victoria
345929190

ISBN 0-13-517129-6 (hardback)
ISBN 0-13-516428-1 (paperback)

National Library of Australia
Cataloguing-in-Publication Data

Debenham, J.K. (John K.).
Knowledge systems design.

Includes index.

ISBN 0-13-516428-1.

1. Expert systems (Computer science). 2. Data base design. . Title.
006.3'3

Library of Congress
Cataloguing-in-Publication Data

Debenham, J.K.
Knowledge systems design.

(Prentice Hall advances in computer science series)
Bibliography: p.
Includes index.
1. Expert systems (Computer science). 2. Data base design.
I. Titdes. II. Series.

QA76.76.E95D43 1989 006.3'3 88-30655

ISBN 0-13-517129-6

Prentice Hall, Inc., Englewood Cliffs, New Jersey
Prentice Hall of Australia Pty L.id, Sydney

Prentice Hall Canada, Inc., Toronto

Prentice Hall Hispanoamericana, SA, Mexico
Prentice Hall of India Private Ltd, New Delhi
Prentice Hall International, Inc., London

Prentice Hall of Japan, Inc., Tokyo

Prentice Hall of Southeast Asia Pty Lid, Singapore
Editora Prentice Hall do Brasil Lida, Rio de Janeiro

= PRENTICE HALL

A division of Simon & Schuster

Knowledge Systems Design

PRENTICE HALL

ADVANCES IN COMPUTER SCIENCE SERIES
Editor: Richard P. Brent

Gough & Mohay Modula-2: A Second Course in Programming

Hille Data Abstraction and Program Development using Pascal
Data Abstraction and Program Development using Modula-2
Rankin Computer Graphics Software Construction

Seberry & Pieprzyk Cryptography: Introduction to Computer Science

Contents

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Preface 1

Perspective 5

1.1 Introduction 5

1.2 Fifth generation computer systems 5
1.3 Hardware and software 7

14 Systems Design 9

1.5 Expert Systems 11

16 Summary 12

Logic as a knowledge language 13

2.1 Introduction 13

2.2 Computational logic 14

2.3 Use of computational logic 24

24 Logic as a programming language 28

2.5 Use of logic as a programming language 30
2.6 Logic as a database language 32

2.7 Use of logic as a database language 36

28 Summary 37

Data, information and knowledge 38
3.1 Introduction 38
3.2 Functional associations 38
3.3 The object classification problem 41
34 Goal dependency in formalisms 45
3.4.1 Relations for information 46
3.4.2 Imperative formalisms for knowledge 47
3.4.3 Declarative formalisms for knowledge 48
3.5 Knowledge systems 50
3.6 Tools for modeling 54
3.6.1 Modeling data 54
3.6.2 Modeling information 55
3.6.3 Modeling knowledge 56
3.7 Summary 66

The knowledge systems design problem 67
4.1 Introduction 67
4.2 Fifth generation machines 67

A\

Vi Contents

4.3 The KPM core languages 68
4.3.1 The data language 69
4.3.2 The information language 73
4.3.3 The knowledge language 76
44 The KPM conceptual architecture 78
4.5 Use of the KPM 80
4.5.1 Use of data language 81
4.5.2 Use of the information language 82
4.5.3 Use of the knowledge language 84
4.6 The object representation problem 87
4.6.1 Data representation 87
4.6.2 Information representation 90
4.6.3 Knowledge representation in traditional systems 91
4.6.4 Knowledge representation in the knowledge language 91
4.7 The knowledge systems design problem 93
4.8 Summary 94

Chapter 5 Normal forms 95

5.1 Introduction 95

5.2 The classical normal forms 97

5.3 Normal forms for data 100

5.4 Normal forms for information 102

5.5 Normal forms for knowledge 104
5.5.1 Normal forms for clauses and groups 104
5.5.2 Normal forms for groups 110

5.6 Normal forms for selections 112

5.7 Compatibility of the normal forms 113

5.8 Summary 115

Chapter 6 Knowledge acquisition 116
6.1 Introduction 116
6.2 The role of the application model 116
6.3 The language of the application model 119
6.4 Object reclassification 122
6.5 The individual requirements 127
6.6 Knowledge elicitation 133
6.6.1 Worked example 140
6.7 Building the data model 147
6.7.1 Worked example 149
6.8 Summary 150

Chapter 7 Knowledge analysis 151
7.1 Introduction 151
7.2 Information analysis and knowledge analysis 152

Contents Vil

7.3 Classification options 155

7.4 Object classification 159

7.5 Building the information model 160
7.5.1 Worked example 162

7.6 Building the knowledge model 169
7.6.1 Worked example 171

7.7 Analysing inverse associations 185
7.7.1 Worked example 187

7.8 Summary 192

Chapter 8 Knowledge base engineering 193
8.1 Introduction 193
8.2 The functional requirements 193
8.3 The knowledge base engineering problem 195
8.4 Complexity of the knowledge base engineering problem 198
8.5 Complexity measures 201
8.6 Sub-optimal group selection 204
8.7 Worked example 206
8.8 Summary 215

Chapter 9 Knowledge base implementation 216
9.1 Introduction 216
9.2 Operational constraints 217
9.3 The knowledge base implementation problem 218
94 The calculation of minimal storage 220
9.5 Complexity of the knowledge base implementation problem 227
9.6 Sub-optimal storage allocation 230
9.7 Worked example 233
9.8 Summary 236

Chapter 10 Management and maintenance 238
10.1 Introduction 238
10.2 Management of knowledge 238
10.3 Managing the design process 241
104 Strategy for maintenance 243
10.5 Constraints and integrity checks 245
10.6 Partitioning large systems 246
10.7 Worked example 249
10.8 Software 258
10.9 Summary 260

Appendix 261
A.1 Introduction 261
A.2 The problem 261

vili Contents

A.3 Knowledge acquisition: 1 266
A4 Knowledge acquisition: 2 275
A.5 Information analysis 285
A.6 Knowledge analysis 289

Bibliography 291

Index 297

Preface

This is a book about design - the design of knowledge-based systems. It is written for
those who have an interest in building expert systems and deductive database systems. It
is written in particular for those who have an interest in building maintainable expert
systems and maintainable deductive database systems. The text, therefore, will appeal to
computer professionals, postgraduate students and senior undergraduate students.

The text contains a detailed description of a method for designing expert knowledge-
based systems and deductive database systems. This method is complete and extends from
initial knowledge acquisition to knowledge base implementation and knowledge base
maintenance. It is claimed that the method presented is suitable for team work. This
method represents and analyzes the knowledge in a way that is quite rigorous and yet is
independent of any particular expert system shell or computer language.

The majority of expert systems constructed in large corporations during the mid- to
late 1980s have not been fully integrated with the central computing resources, in
particular with the corporate databases. There are two main reasons for this; first, the lack
of suitable, reliable, integrated knowledge base management system software, and second,
the lack of design methodologies which permit “knowledge” to be gathered, modeled,
analyzed, normalized and implemented with the same degree of precision as is typically
applied to “information”. This book addresses the second issue and its text should be of
prime interest to those large corporations with a commitment to building up a large,
integrated, corporate knowledge base.

The work reported here began in 1982 with a joint research project with Mike
McGrath of Telecom Australia. At that time we rebuilt the substantial Telecom
Telephone Accounting System for the Sydney region as a deductive database using logic
programming. This was a large database of some 250 mega-bytes of “information” and a
substantial and complex set of rules or “knowledge”. It is believed to be the first large,
commercial database actually implemented in logic. This design exercise involved a very
large number of design decisions made at the time on a more or less ad hoc basis.
However, this experiment clearly defined the major problems which this text now
attempts to solve. Since that time, research has concentrated on assembling a set of
systematic techniques for solving the major problems encountered in that early
experiment. This set of techniques is now complete and is reported herein.

A key feature of our method is the construction of a “normalized model” of the
application. The normalized model consists of a formal part and an informal part. The
formal part of the normalized model is called the “system model”; it contains all the
information required by a programmer to implement the system. The informal part of the
normalized model is called the “application model”; it consists of a description of the
application in stylized natural language. Thus, the application model acts as both the

1

2 Preface

documentation for the system model and as the specification of the application with which
a nontechnical domain expert can easily interact. The normalized model is in normal form
in a fairly elaborate sense which is a direct extension of the well established normal forms
for information. Our normal forms include, in particular, a set of technical normal forms
for knowledge. The idea behind the normal forms is that each real “thing” in the
application should be represented in one place, and in one place only, in the normalized
model. This should greatly assist the knowledge base maintenance process.

The text is illustrated with examples expressed in logic programming. Logic
programming was chosen because it is both very simple and widely understood when
compared with other knowledge languages. We would like to stress that we are not
necessarily promoting logic programming as an ideal language for implementing expert,
knowledge-based systems or deductive databases. We would also like to stress that the
ideas presented in this text are quite independent of logic programming; the general
principles discussed and the examples given may easily be re-expressed in any other
suitable formalism or general purpose expert system shell.

It is important to appreciate that the work reported here is not intended to be a
complete account of expert systems or deductive databases. In fact no attempt is made to
present material on expert systems or deductive database systems that is generally
available in the current literature. For example, the reader whose principal interest is the
design of expert systems is assumed to be familiar with (Waterman, 1986); the reader
whose principal interest is the design of deductive database systems is assumed to be
familiar with (Kerschberg, 1986). The reader is also assumed to be familiar with the
design of databases, the managerial difficulties in maintaining databases, the elements of
knowledge processing, and, preferably, the use of at least one expert system shell. For
example, “machine learning”, which is a powerful technique that may be applied to the
generation of knowledge from hard data, is not discussed at all; see, for example, the
work of Quinlan. Also, for example, “plausible inference”, which lies at the heart of
many expert systems shells, only receives a mention in passing (Horvitz, Bresse and
Henrion, 1988). This is not then a suitable text for the beginner; it is designed for the
educated, knowledge-processing specialist. It attempts to show such a specialist how to
do a better and more systematic job. With the exception of Chapter 2, the material
presented herein is not generally available elsewhere.

The approach to designing corporate knowledge bases presented here is deliberately
compatible with established techniques for database design. This compatibility has been
made possible by the way in which we regard “data”, “information” and “knowledge” as
strictly separate, but integrated, concepts (Chapter 3). In other words, existing techniques
for information analysis are used to design the information component of a knowledge
base. Thus, in a sense, we see knowledge base architecture as a direct extension of
existing database architecture, and have acknowledged this relationship in the design
technique presented here which may be seen as a direct extension of existing techniques for
database design. This text then should also be of interest to those involved in the design
of conventional databases in which the management of the “rules” is a complex issue.

The design method for knowledge systems (Chapter 4) discussed in this text is
presented as though for hand computation. It should be stressed that this is for the sake of
exposition only. For the.effective application of the method to a large problem, a support
environment, or “knowledge base design assistant” is essential. Such an environment

Preface 3

would be expected to assist with the knowledge acquisition (Chapter 6) and knowledge
analysis (Chapter 7) phases by looking after all the “housekeeping” and by playing an
active role in the normalization process (Chapter 5). The knowledge base engineering
(Chapter 8) and knowledge base implementation (Chapter 9) phases should be fully
automated. The knowledge base design assistant should also play a crucial role in
knowledge base maintenance (Chapter 10). A restricted, prototype knowledge base design
assistant was constructed in 1986 by Alan McNamarra as part of the Knowledge
Engineering Work Bench project which was made possible by the generous support of the
Australian Federal Department of Science. This prototype system has been used
extensively for conducting experiments associated with the research reported herein.

In September 1988 construction commenced of a software package which supports
and implements the knowledge systems design technique reported in this text. This
software is being constructed by the Australian Commonwealth Scientific and Industrial
Research Organisation (CSIRO) within their Division of Information Technology. This
software functions as a complete Knowledge Analyst’s Assistant, and is intended for
serious, professional use. It is constructed so as to be independent of any particular expert
systems shell or other implementation language. As well as enabling the knowledge
analyst to design and maintain modules of knowledge, the software provides a prototyping
facility. A full description of the operation of this software is given at the end of Chapter
10 in Section 10.8. In the first instance, enquiries should be directed to:

Knowledge Systems Design Project,
CSIRO,

Division of Information Technology,
PO Box 1599,

North Ryde, NSW, 2113,

Australia.

The software is scheduled to be available for distribution late in 1989.

We adopt two important conventions. First, new terms, as they are defined, will be
presented in italics and a reference to each definition should be found in the index; italics
are also used for emphasis. Second, when terms are used in the general text before they
have been formally defined, in which case the reader is called upon to provide an intuitive
meaning, the term will appear within quotation marks. Thus, if a technical term appears
within quotation marks in the general text, then this means that the reader is not expected
to know precisely what the term means, but from the context, should be able to sense
approximately what the term means.

I would like to thank all those who have assisted in the development of this text.
First, I would like to thank Professor Ross Quinlan of the University of Sydney who
encouraged me to write the book. Second, I would like to thank the University of
Technology, Sydney, for their generous study leave provisions during which the greater
part of the writing was done. Third, I would like to thank the CSIRO’s Division of
Information Technology at North Ryde, Sydney, for welcoming me to their laboratory
where most of the book was written. In particular, I would like to thank the chief of the
Division who was initially Dr G. E. Thomas and subsequently Dr J. F. O’Callaghan for
their hospitality. Fourth, I would like to thank Dr I. W. Montgomery, an exponent of

4 Preface

the Binary Relationship approach to information analysis, for his assistance with the
information analysis. Last, I would like to thank Dr R. M. Colomb, principal research
scientist at the Division, for painstakingly reading and rereading the manuscript as it
developed and for his detailed comments; I would like to acknowledge his excellent
suggestions, many of which which have been incorporated into the text.

John K. Debenham,
University of Technology, Sydney
November 1988.

'ﬂ Perspective

1.1 INTRODUCTION

In this chapter we place knowledge systems in an historical perspective. First, we discuss
a major development in knowledge processing machinery, namely the Japanese Fifth
Generation Computer Systems Project. Second, we compare and contrast traditional
hardware and software technology with knowledge processing technology. Third, we look
at the recurring patterns in the history of design techniques and predict the need that
knowledge systems will have for rigorous design. And last, we discuss the relevance of
“expert systems” to the evolving world of knowledge systems.

1.2 FIFTH GENERATION COMPUTER SYSTEMS

The Japanese Fifth Generation Computer Systems Project (FGCS) has been one
important factor responsible for the rise in interest in Knowledge Systems. The FGCS
project is, of course, not the only such development. However, it was the first to be
publicized on a grand scale and it has been well reported so it is appropriate for us to
begin by reviewing briefly some of the goals and intentions of this substantial project.

The Japanese Fifth Generation Computer Systems (FGCS) Project has been dubbed
“The Second Computer Revolution”; others have described it as the first computer
revolution (Feigenbaum and McCorduck, 1983) and the “Third Industrial Revolution”
(Sinclair, 1984). What is this project? Why is it so special? What does it mean to the
professions in general? What does it mean to the information industry in particular?

During 1981 the Japanese Government conducted a substantial survey which
attempted to identify the computing requirements of Japan into the 1990s. This survey
concluded with four main goals (Moto-Oka, 1982):

1. toincrease productivity in low-productivity areas; key target areas being:
» document processing;
« office management;
« decision making in management;
- office automation;

2. to meet international competition and contribute toward international cooperation.
An important consequence is “knowledge” being seen as a commodity which can be
packaged and sold;

6 Chapter 1

3. to assist in saving energy and resources. This includes the reduction of movement of
people through the installation of sophisticated, distributed knowledge-based systems;

4. to cope with an aged society. This includes the effective education of an aging
society; in particular, the provision of effective computer-assisted education for the
professional at home and in the office throughout that professional’s career.

It is clear that all four goals have significant implications for professional life. If the four
goals noted above are achieved, then the main impact on professional life implied directly
by those goals will be:

1. both a substantial change in the intellectual “objects” which professionals use within
their own businesses, and a substantial change in the intellectual “objects” used by
the whole business community, and with which professionals will have to interact;

2. the sort of knowledge which members of professions presently possess and from
which these professionals presently derive an income will become increasingly
available in a mechanized form;

3. both a substantial change in the way in which professionals interact with each other
and a substantial change in the way in which professionals interact with their clients
and their clients’ businesses;

4. the way in which professionals acquire, maintain and propagate their professional
knowledge will change.

Thus, the impact on professionals within the information industry will take two forms;
first, the way in which they, as professionals, go about their business will change, and
second, the computer systems with which they deal will be playing a significantly
different role in their clients’ lives than the majority of computer systems do today.

In October 1981 the Japanese Government announced the FGCS project, and on
14 April, 1982 the Institute for New Generation Computer Technology (ICOT) was
launched in Tokyo. The aim of the FGCS project is to design and build computing
equipment that will satisfy the four goals identified in the survey, and noted above. The
plan is for the project to be complete by 1992. The extent to which this plan is being
realized on schedule is not clear. However, whether the FGCS project meets its goals or
not, it is our view that considerable progress is being made by this and other projects
towards the construction of knowledge processing machines of some sort. It is our view
that during the early 1990s knowledge processing hardware will be widely available, and
will be sufficiently powerful to threaten the professional community with substantial
change.

How will fifth generation computers differ from current generation computers? The
differences between the first four generations of machines are principally in the hardware,
that is, in the way in which they are constructed; the basic design remains much the same.
The design philosophy of traditional computers is often referred to as “Von Neumann
architecture”, and is named after an early pioneer in computing. Four key features of
machines based on Von Neumann architecture are:

1. They have a program controller which controls the sequential operation of the
program (i.e. one instruction is executed at a time).

Perspective 7

2. They have a memory which consists of a large number of discrete memory locations.
Each location is primarily intended to store a number.

3. They have a processor which is capable of performing operations on the values stored
in the memory. The operations are primarily arithmetic.

4. They have input and output devices which are based principally on typed characters.

The whole architectural concept of fifth generation computers will differ radically from the
Von Neumann architectural philosophy; both the architectural concept itself and the way
in which this concept is realized in VLSI (i.e. “computer chips”) or in ULSI (i.e. Ultra
Large Scale Integration, the computer chips of the near future) will represent major
advances. Key features of the new architecture follow:

1. There will be a large number of processors which may compute, in some sense in
parallel, more or less independently from one another.

2. The processors will hold their own data, and, in addition, will be tightly coupled with
large database machines, which will be especially designed for that purpose.

3. Each processor will be designed to perform logical deduction as its basic
computational step. In addition, the processors will have access to very high speed
arithmetic and other special purpose, auxiliary processors.

4. Input and output facilities will include the mechanization of “intelligent interfaces”
based on work in Artificial Intelligence. These will include optical character
recognition and speech recognition, as well as spoken output.

In short, the machines will provide an architecture well suited to the mechanization of
intelligence. A central design decision of the FGCS project was to adopt “logic” as the
kernel programming language. We will discuss “logic” in the following chapter. If the
FGCS project succeeds in meeting all of its goals, it will, without doubt, constitute a
quantum leap in the development of computing machinery.

What do the Japanese hope to gain from the FGCS project? The FGCS project is a
vital component in Japan’s decision to become the first post-industrial society. In
industrialized society the wealth of nations depends on natural resources, the accumulation
of money and upon weaponry. In a post-industrial society the wealth of nations will
depend on information, knowledge and intelligence.

“Japanese planners view the computer industry as vital to their nation’s economic
future and have audaciously made it a national goal to become number one in this
industry by the latter half of the 1990s. They aim not only to dominate the
traditional (Von Neumann) forms of the computer industry (Kashiwagi, 1985) but to
establish a ‘knowledge industry’ in which knowledge itself will be a saleable
commodity like food and oil. Knowledge itself is to become the new wealth of
nations.” (Feigenbaum and McCorduck, 1983.)

1.3 HARDWARE AND SOFTWARE

The much publicized Japanese Fifth Generation Computer Systems Project has
undoubtedly been partly responsible for the rapidly increasing interest in knowledge
processing among the members of the computing profession. This project has presented

8 Chapter 1

the profession with the promise of an architecture which differs radically from
conventional hardware design and which is intended for knowledge processing. This has
quite understandably generated considerable motivation for professionals to find out what
“knowledge processing” is all about. It is, however important to remind ourselves that
while these knowledge processing machines will no doubt bring dramatic increases in
speed and decreases in cost for processing knowledge they will not possess an increase in
capability over conventional architectures. That is, anything that can be done on a
knowledge processing machine can be done on a conventional machine, possibly at
considerably slower speed. Thus, whereas it is true to state that some knowledge
processing applications which are unfeasible today will become feasible on these new
architectures, it is also true to say that knowledge processing machines will not provide
us with any theoretical increase in computing capability. In other words, knowledge
processing machines will not transcend the capability of the classic Turing model.

We have seen that the impact of knowledge processing machines will be largely one
of efficiency; in particular, the efficiency of processing “knowledge”. Thus, we propose
that the appropriate response to the advent of such machines is to ask, “How can we
design application systems which take the greatest advantage of this new hardware?”.
Consideration of this question forms the greater part of the work reported here.

The Japanese Fifth Generation Computer Systems Project was also greatly
responsible for the sudden increase in interest within the computing profession in the
logic programming languages. After all, logic programming was announced as the kernel
language of these new computers. Professionals in the information industry have been
confronted with a language which has some extraordinary properties. This language
admits a purely declarative semantics, and so contains no purely imperative statements
such as the assignment statement. As we will see, a language which admits a declarative
semantics is more suited to the representation of “knowledge” or “rules” than a
conventional, imperative programming language. Logic programming is described as
being a “very high level” language and yet it is to be, in effect, the machine code of these
new computers. Thus, professionals have been faced with the prospect of a quantum leap
in software technology of undeniably impressive dimensions.

There is no doubt that, in general, knowledge can be expressed far more simply in
logic than in, say, the programming language BASIC. However, it is important to
remind ourselves that the use of logic as an implementable formalism for the
representation of knowledge will not, in itself, simplify the design process. In other
words, just because we are using logic to implement a system, the whole business of
constructing a “good” design will not be reduced to the application of a few simple rules.
To draw an analogy with programming, one could argue that a programmer is likely to
write better structured code when using the programming language Pascal than when
using the programming language BASIC. However, it is quite possible to write equally
unstructured code in Pascal as anything that can be represented in BASIC. That is, a
programming language may reflect a design philosophy, but, if it is a general purpose
language, it can’t be expected to enforce the application of that philosophy.

