PURE AND APPLIED MATHEMATICS

A Series of Monographs and Textbooks

STATISTICAL
THEORY

AND RANDOM
MATRICES

:
ﬂ
:
.

Moshe Carmeli

)

+ _
L

Q




STATISTICAL THEORY
AND RANDOM MATRICES

Moshe Caymeli

S——

Center for Theoretical Physics

Ben Gurion University of the Negev
Beer Sheva

Israel

MARCEL DEKKER, INC. New York and Basel



Library of Congress Cataloging in Publication Data

Carmeli, Moshe,
Statistical theory and random matrices.

(Monographs and textbooks in pure and applied
mathematics ; v. 74)

Bibliography: p.

Includes index.

1. Energy levels (Quantum mechanics)--Statistical
methods. 2. Matrices. I. Title. II. Series.
QC174.45.C37 1983 530.1°43 82-22031
ISBN 0-8247-1779-1

COPYRIGHT © 1983 by MARCEL DEKKER, INC. ALL RIGHTS RESERVED

Neither this book nor any part may be reproduced or transmitted in any
form or by any means, electronic or mechanical. including photocopying,
microfilming, and recording, or by any information storage and retrieval
system, without permission in writing from the publisher.

MARCEL DEKKER, INC.
270 Madison Avenue, New York, New York 10016

Current printing (last digit):
10 9 87 6 5 4 3 21

PRINTED IN THE UNITED STATES OF AMERICA



PURE AND APPLIED MATHEMATICS

A Program of Monographs, Textbooks, and Lecture Notes

EXECUTIVE EDlTORS—MONOGRAPHS, TEXTBOOKS, AND LECTURE NOTES
Earl J. Taft

Rutgers University
New Brunswick, New Jersey

Edwin Hewitt
University of Washington
Seattle, Washington
CHAIRMAN OF THE EDITORIAL BOARD

S. Kobayashi
University of California, Berkeley
Berkeley, California

EDITORIAL BOARD

Glen E. Bredon Irving Reiner
Rutgers University University of Illlinois
Sigurdur Helgason at Urbana-Champaign
Massachusetts Institute of Technology Fred S. Roberts
Marvin Marcus Rutgers University
University of California, Santa Barbara Paul J. Sally, Jr.
W. S. Massey University of Chicago
Yale University Jane Cronin Scanlon
Leopoldo Nachbin Rutgers University
Universidade Federal do Rio de Janeiro Martin Schechter
and University of Rochester Yeshiva University
Zuhair Nashed Julius L. Shaneson
University of Delaware Rutgers University
Donald Passman Olga Taussky Todd

University of Wisconsin California Institute of Technology



10.
1.
12.
13.
14.

15,
16.

17.
18.
19.
20.
21.
22,
23,

24.
25,

26.
27.
28.
29:

MONOGRAPHS AND TEXTBOOKS IN
PURE AND APPLIED MATHEMATICS

K. Yano, Integral Formulas in Riemannian Geometry (1970) (out of print)
S. Kobayashi, Hyperbolic Manifolds and Holomorphic Mappings (1970)
(out of print)

V. S. Viadimirov, Equations of Mathematical Physics (A. Jeffrey, editor;
A. Littlewood, translator) (1970) (out of print)

B. N. Pshenichnyi, Necessary Conditions for an Extremum (L. Neustadt,
translation editor; K. Makowski, translator) (1971)

L. Narici, E. Beckenstein, and G. Bachman, Functional Analysis and
Valuation Theory (1971)

D. S. Passman, Infinite Group Rings (1971)

L. Domhoff, Group Representation Theory (in two parts). Part A:
Ordinary Representation Theory. Part B: Modular Representation Theory
(1971, 1972)

W. Boothby and G. L. Weiss (eds. ), Symmetric Spaces: Short Courses
Presented at Washington University (1972)

Y. Matsushima, Differentiable Manifolds (E. T. Kobayashi, translator)
(1972)

L. E. Ward, Jr., Topology: An Outline for a First Course (1972) (out of print)
A. Babakhanian, Cohomological Methods in Group Theory (1972)

R. Gilmer, Multiplicative Ideal Theory (1972)

J. Yeh, Stochastic Processes and the Wiener Integral (1973) (out of print)
J. Barros-Neto, Introduction to the Theory of Distributions (1973)

(out of print)

R. Larsen, Functional Analysis: An Introduction (1973) (out of print)

K. Yano and S. Ishihara, Tangent and Cotangent Bundles: Differential
Geometry (1973) (out of print)

C. Procesi, Rings with Polynomial Identities (1973)

R. Hermann, Geometry, Physics, and Systems (1973)

N. R. Wallach, Harmonic Analysis on Homogeneous Spaces (1973) (out of print)
J. Dieudonné, Introduction to the Theory of Formal Groups (1973)

I. Vaisman, Cohomology and Differential Forms (1973)

B.-Y. Chen, Geometry of Submanifolds (1973)

M. Marcus, Finite Dimensional Multilinear Algebra (in two parts)

(1973, 1975)

R. Larsen, Banach Algebras: An Introduction (1973)

R. O. Kujala and A. L. Vitter (eds), Value Distribution Theory: Part A;
Part B. Deficit and Bezout Estimates by Wilhelm Stoll (1973)

K. B. Stolarsky, Algebraic Numbers and Diophantine Approximation (1974)
A. R. Magid, The Separable Galois Theory of Commutative Rings (1974)
B. R. McDonald, Finite Rings with Identity (1974)

J. Satake, Linear Algebra (S. Koh, T. Akiba, and S. Ihara, translators)
(1975)



30.
3.
32.
33.
34.
35.
36.
37.

38.

39.
40.
41.
42.
43.

45.
46.
47.
48.
49.
50.
51.
52.
33,

54.

555
56.

5%

58.
59.

60.

61.

62.

J. S. Golan, Localization of Noncommutative Rings (1975)

G. Klambauer, Mathematical Analysis (1975)

M. K. Agoston, Algebraic Topology: A First Course (1976)

K. R. Goodearl, Ring Theory: Nonsingular Rings and Modules (1976)
L. E. Mansfield, Linear Algebra with Geometric Applications: Selected Topics (1976
N. J. Pullman, Matrix Theory and Its Applications (1976)

B. R. McDonald, Geometric Algebra Over Local Rings (1976)

C. W. Groetsch, Generalized Inverses of Linear Operators: Representation
and Approximation (1977)

J. E. Kuczkowski and J. L. Gersting, Abstract Algebra: A First Look
(1977)

C. O. Christenson and W. L. Voxman, Aspects of Topology (1977)

M. Nagata, Field Theory (1977)

R. L. Long, Algebraic Number Theory (1977)

W. F. Pfeffer, Integrals and Measures (1977)

R. L. Wheeden and A. Zygmund, Measure and Integral: An Introduction
to Real Analysis (1977)

J. H. Curtiss, Introduction to Functions of a Complex Variable (1978)
K. Hrbacek and T. Jech, Introduction to Set Theory (1978) (out of print)
W. S. Massey, Homology and Cohomology Theory (1978)

M. Marcus, Introduction to Modern Algebra (1978)

E. C. Young, Vector and Tensor Analysis (1978)

S. B. Nadler, Jr., Hyperspaces of Sets (1978)

S. K. Sehgal, Topics in Group Rings (1978)

A. C. M. van Rooij, Non-Archimedean Functional Analysis (1978)

L. Corwin and R. Szczarba, Calculus in Vector Spaces (1979)

C. Sadosky, Interpolation of Operators and Singular Integrals:

An Introduction to Harmonic Analysis (1979)

J. Cronin, Differential Equations: Introduction and Quantitative
Theory (1980)

C. W. Groetsch, Elements of Applicable Functional Analysis (1980)

I. Vaisman, Foundations of Three-Dimensional Euclidean

Geometry (1980)

H. I. Freedman, Deterministic Mathematical Models in

Population Ecology (1980)

S. B. Chae, Lebesgue Integration (1980)

C S. Rees, S. M. Shah, and CV. Stanojevic, Theory and

Applications of Fourier Analysis (1981)

L. Nachbin, Introduction to Functional Analysis: Banach Spaces

and Differential Calculus (R. M. Aron, translator) (1981)

G. Orzech and M. Orzech, Plane Algebraic Curves: An Introduction
Via Valuations (1981)

R. Johnsonbaugh and W. E. Pfaffenberger, Foundations of
Mathematical Analysis (1981)



64.
65.
66.

67.
68.
69.

70.

71.

72.
13:

74.

W. L. Voxman and R. H. Goetschel, Advanced Calculus: An
Introduction to Modern Analysis (1981)

L. J. Corwin and R. H. Szczarba, Multivariable Calculus (1982)

V. I. Istrdtescu, Introduction to Linear Operator Theory (1981)

R. D. Jarvinen, Finite and Infinite Dimensional Linear Spaces:

A Comparative Study in Algebraic and Analytic Settings (1981)

J. K. Beem and P. E. Ehrlich, Global Lorentzian Geometry (1981)

D. L. Armacost, The Structure of Locally Compact Abelian Groups (1981)
J. W. Brewer and M. K. Smith, eds., Emmy Noether: A Tribute to Her
and Work (1981)

K. H. Kim, Boolean Matrix Theory and Applications (1982)

T. W. Wieting, The Mathematical Theory of Chromatic Plane Ornaments
(1982)

D. B. Gauld, Differential Topology: An Introduction (1982)

R. L. Faber, Foundations of Euclidean and Non-Euclidean Geometry

(1983)
M. Carmeli, Statistical Theory and Random Matrices (1983)

Other Volumes in Preparation



PREFACE

The question whether the highly excited states of a physical system
may be understood by assuming no structure to the system, and
that no quantum number other than the spin and the parity remains
good, leads to the statistical theory of energy levels and its relation
to random matrices. Such a statistical theory is designed to describe
the general appearance and the degree of irregularity of the level
structure that occurs in a complex physical system, which is other-
wise too complicated to be understood in detail, rather than to
predict the detailed sequence of the energy levels in any particular
nucleus or atom.

The standard type of statistical mechanics is clearly inadequate
for the discussion of energy levels since statements on the fine detail
of the energy level structure cannot be made in terms of an ensemble
of states. What is required is a different kind of statistical mechanics
in which one renounces the exact knowledge not of the state of the
system but of the nature of the system itself.

The problem then is to define in a mathematically precise way
an ensemble of systems in which all possible laws of interactions are
equally probable. The idea of a statistical mechanics of nuclei, which
is based on an ensemble of systems, is due to Wigner and to von
Neumann. This book summarizes the fundamentals of this theory.

After introducing the basic concepts of the statistical theory of
energy levels and their relations to random matrices in Chapters 1
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and 2, we discuss the symmetry properties of physical systems in
Chapter 3. Different kinds of ensembles are subsequently introduced
and discussed. This includes the Gaussian and the orthogonal ensem-
bles which are discussed in Chapter 4, followed by the unitary
ensemble discussed in Chapter 5.

In Chapter 6 the problem of eigenvalue-eigenvector distribu-
tions of the Gaussian ensemble is discussed, while Chapter 7 deals
with the distribution of the widths. We then discuss the symplectic
group and its relation to quaternions in Chapter 8. A detailed
discussion on the Gaussian ensemble is subsequently given in
Chapter 9. Chapter 10 is devoted to the summary, whereas
Appendices A and B include a detailed discussion on the statistical
aspects of multivariate distributions, and Appendix C on the ergodic
properties of random matrices.

I'am indebted to Professor P. R. Krishnaiah for stimulating my
interest in the statistical theory of multivariate distributions of
random matrices. I am also most thankful to Professor E. P. Wigner
for emphasizing the uniqueness of the statistical theory of energy
levels and for his comments on the use of complex Wishartian
ensemble (see Chapter 10). Also, I am indebted to Mrs. Sara
Corrogosky for her technical assistance in preparing and typing the
manuscript of the book, and to Professor J. B. French and the
American Physical Society for their permission to reproduce
Figures 5.1-5.5,6.1-6.3, and 7.1.

Part of this book was written while the author was a Visiting
Professor and Member of the Institute for Theoretical Physics, State
University of New York at Stony Brook. I am indebted to Professor
Chen Ning Yang for his kind hospitality at Stony Brook in 1977-78
and 1981. Finally, I am most grateful to my wife Elisheva for her
moral encouragement and technical help without which the book
would probably have never been written.

Moshe Carmeli
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CHAPTER 1
INTRODUCTION

1.1 COMPLEX SYSTEMS

Within the theory of quantum mechanics [see, for instance, Schiff
(1)] the behavior of a physical system is determined by a state func-
tion W. The state function is then a solution of the familiar

Schrodinger equation,
HY = EY, (1.1)

where H is the Hamiltonian operator, which is a Hermitian operator,
and £ is a constant which denotes the energy levels of the system.



2 INTRODUCTION

Thus the energy levels are characteristic values (eigenvalues, or roots)
of Hermitian operators. The stationary states of the system are the
corresponding characteristic vectors (or eigenfunctions).

Although theoretical analyses have had impressive success, as
was pointed out by Kisslinger and Sorensen (2), and by Baranger (3),
in interpreting the detailed structure of the low-lying excited states
of complex systems [here the word system is used for a physical
quantum system that can be described by the Schrodinger equation;
a system could be, for example, a complex nucleus, as is discussed in
(2) and (3), or an atomic system], still, there must come a point
beyond which such analyses of individual levels cannot usefully go
[Dyson (4)]. For example, observations of levels of heavy nuclei in
the neutron-capture region [Rosen, Desjardins, Rainwater, and
Havens (5)] give exact information on the energy levels from number
N to number N + n, where 7 is an integer of the order of 100 whereas
N is an integer of the order of one million. It appears improbable
that energy level assignments, based on various models, can ever be
pushed as far as the millionth level.

12 STATISTICAL THEORY OF LEVELS

One is then led to ask whether the highly excited states may be
understood from the opposite point of view, by assuming no struc-
ture for the system and that no quantum numbers other than spin
and parity remain good. Such an inquiry leads to a statistical theory
of energy levels.

Such a statistical theory is not supposed to predict the detailed
sequence of energy levels in any one nucleus or atom, but is expected
to describe the general appearance and the degree of irregularity of
the level structure that is to occur in a complex system which is
otherwise too complicated to be understood in detail.

As Dyson (4) has pointed out, in ordinary statistical mechanics
a comparable renunciation of exact knowledge about the system is
also made. By assuming that all states of a very large ensemble are
equally probable, one obtains useful information about the overall
behavior of a complex system when the observation of the state of
the system in all its detail is impossible. This standard type of statis-
tical mechanics is clearly inadequate for the discussion of energy
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levels. What one wishes is to make statements on the fine detail of
the energy level structure, and such statements cannot be made in
terms of an ensemble of states. What is required is a different kind
of statistical mechanics in which one renounces exact knowledge
not of the state of a system but of the nature of the system itself.
One might picture a complex nucleus as a “black box” in which a
large number of particles are interacting according to unknown laws.
The problem then is to define in a mathematically precise way an
ensemble of systems in which all possible laws of interaction are
equally probable. The idea of a statistical mechanics of nuclei based
on an ensemble of systems is due to Wigner.

1.3 COMPARISON WITH STATISTICAL MECHANICS

The difference between the usual statistical mechanics and the
statistical theory of energy levels can also be seen, according to
Wigner (6), as follows.

A system in quantum mechanics can be characterized by the
Hamiltonian H, which is a self-adjoint linear operator in the infinite-
dimension Hilbert space of functions . If one introduces a coordi-
nate system in the Hilbert space, the Hamiltonian operator may then
be looked at as a Hermitian matrix of infinitely many dimensions.
Therefore, an ensemble of systems can be considered as an ensemble
of Hermitian matrices. At this stage one might consider matrices of
very high dimensionality rather than infinite matrices. However, the
question arises as to what ensemble of such matrices one has to
consider. Herein lies the difference between the ensembles of
statistical mechanics and the ensemble of the statistical theory of
energy levels.

In statistical mechanics one considers a system of particles with
definite masses interacting among themselves by a given law. The
state of such a system can be specified, in classical mechanics, by the
generalized coordinates ¢; and the generalized momenta p; of the
particles, where both g; and p; are functions of time. The physical
quantities one is then interested in are the time averages of continu-
ous functions f of the coordinates and momenta,

t+T
lim <1j f(q,(r),qz(r),...,pl(r),pz(r),...)dr>. (1.2)
T \T J;
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Using Newton’s law of motion, one can, in principle, determine the
coordinates and momenta as functions of time and their initial values
[see, e.g., Goldstein (7)]. Hence the averaging process is an entirely
definite one, and the result is a function only of the constants of
motion, such as energy, but independent of other initial conditions.
This result, except for rare cases, has long been proved and known by
von Neumann and others [Koopman (8); Birkhoff (9, 10); von
Neumann (7 /); Birkhoff and Koopman (12)].

The averaging process in the theory of random processes, on the
other hand, is not defined. One again deals with a specific system
with its proper, though in many cases unknown, Hamiltonian and
pretends that one deals with a multitude of systems, all with their
own Hamiltonians, and averages over the properties of these systems.
Such a procedure can be meaningful only if it turns out that the
properties in which one is interested are the same for the vast
majority of the admissible Hamiltonians.

1.4 EXAMPLES

What are the admissible Hamiltonians, and what is the proper
measure in the ensemble of these Hamiltonians? And suppose the
ensemble of admissible Hamiltonians with a proper measure is given.
Are the properties in which we are interested common for the vast
majority of them?

Figures 1.1-1.3 illustrate the situation which leads to the idea of
the statistical properties of the spectrum in the higher-energy region,
as compared to low-energy region, where one desires to have a rather
complete description of the stationary states and as complete a
listing as possible of the exact values of the energy levels.

Figure 1.1 gives the energy levels of the nuclei beryllium, boron,
and carbon (1°Be, 1°B, and °C). The diagram shows the eight
lowest energy levels of 1°B and the lowest two energy levels of 10Be
and 19C. Tt gives the position of these energy levels, their total
angular momenta J, and parities 7' [Ajzenberg and Lauritsen (/3)].

Of much interest, but not shown in the diagram, are the transi-
tion probabilities between these levels. Such transition probabilities
can be calculated if the characteristic functions associated with the
characteristic values are known. Conversely, agreement between the
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Figure 1.1 Energy levels of the nuclei lOBe, 10 and 1°C [Ajzenberg and
Lauritsen (13)].

observed transition probabilities and the calculated values of these
quantities gives an indication of the accuracy of the calculated
characteristic function [Wigner (/4)].

Figure 1.2 gives the energy levels of 8 Hf. This nucleus has a
rotational band [Mihelich, Scharff-Goldhaber, and McKeown (75)].
The angular momenta of the states shown are J =0, 2, 4, 6, 8 in units
of h/2m, where & is Planck’s constant. The energy levels of these
states are proportional to J(J + 1), where J is the angular momentum
quantum number.



