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INTRODUCTION

During the spring semester of 1979 we presented a program in
Euclidean harmonic analysis at the University of Maryland. The six
lecture series comprising this volume were a major part of our program.

Euclidean harmonic analysis has a rich basic theory and maintains
a vital relationship with several other areas which, in fact, have
molded the subject and enlivened it with significant applications for
over 150 years. Wiener's Tauberian theorem provides a neat example of
this fundamental and, to some extent, mysterious interplay. Wiener's
theorem not only characterizes the prime ' number theorem but is used to
define spectra properly for phenomena such as white light; this spectral
theory provides perspective for the Fourier analysis associated with
correlation functions in filtering and prediction problems, and these

problems, in turn, lead naturally to HP spaces.

In the first lecture series of this volume L. CARLESON addressed
the two main problems of classical statistical mechanies: a. the veri-
fication of expected equilibrium thermodynamic properties and b. the
validity of the Gibbs theory for dynamical systems. The results of
part a include proofs of the basic properties of the free energy
function, as well as a rigorous verification of the existence of phase
transition for certain classical models. In part b Carleson first
discusses a Boltzmann equation and the approach to equilibrium that it
describes. He then considers dynamical properties of harmonic oscill-
ator systems and shows how one can verify the Gibbs theory for an
ensemble of such systems. Classical harmonic analysis is pervasive in
his approach; and the point of his lectures is to introduce some
analytic results and problems which may eventually lead to further

progress in applications.

The remaining lecture series contained in this volume, as well as
the lectures by our other visitors, fell into one or the other of two

categories of problems.

The first category of problems deals with the synthesis of pre-

scribed harmonics to describe a given phenomenon.

The fundamental synthesis problem is to determine whether or not
the Fourier series of a function f converges in some designated way
to the function. The most famous question in this area treats the case
in which f is an element of L2[O,2w) and convergence is pointwise
almost everywhere. Carleson answered this question in 1966 by proving
that every such function is the pointwise almost everywhere sum of its
Fourier series. C. FEFFERMAN gave a conceptually different proof of



Carleson's theorem in 1973, and an explanation of this proof as well

as a comparison between it and Carleson's was the subject of his
lecture series. Since Fefferman's paper has already appeared (Ann.
Math., 98 (1973) 551-571) we have not included his lectures in this
volume, and because of this omission we mention a few of his comments.
We begin by recalling that in 1968 Hunt proved Carleson's theorem for
Lp[O,Zﬂ), p > 1, and that Carleson's method of proof can even be used
for the space L log L(loglogL). On the other hand, Fefferman's method
is L2 in nature and depends on an orthogonality property of linear
operators first formulated by Cotlar. To begin with, Carleson's

theorem is an easy consequence of the maximal function estimate,

2
(1) YEeL[0,2m), |sup|S, f()|], = C|f]
2 N N 1 9:2

where Syf is the Nth partial sum of the Fourier series of f. The
classical formula, SNf = DN*f, where DN is the Dirichlet kernel,
expresses SNf as a Hilbert transform H, and the fundamental nature
of the operator H in Euclidean harmonic analysis, including its
boundedness on Lz,provides the basic direction for Fefferman's approach.
Instead of substituting the Hilbert transform representation of S, f

N
into (1), he begins by noting that (1) is equivalent to the estimate,

IS¢y
Then he observes that (1) follows from the inequalities,

f(')Hl < C”f”2> where N 1is a function depending on f and x.

”TNf”l < CHfHZ, for arbitrary functions N(x), where TNf(X) is

essentially H(eiN(X)yf(y)). For each N(x), he verifies the corres-
ponding inequality by making a proper dyadic decomposition of T and
applying Cotlar's result to the relatively independent and orthogonal
pieces of the decomposition. In his lectures, Fefferman illustrated
the method for the case of N(x) = Ax, which in fact contains the
germ of the whole argument; and then, for arbitrary N(x), he explained
his combinatorial procedure and decomposition of T into sums of
local operators which contain both space and frequency data on small
intervals. Regardless of the simplicity or complexity of f or N,
Carleson's method analyzes the given function f and is oblivious to
the corresponding function N, and Fefferman's method does the opposite.
Synthesis was also the subject matter of the lecture series by
both Y. DOMAR and L. HEDBERG. The problems they discussed fall into
the category of spectral synthesisand have the following formulation:
let X be a class of distributions with support contained in a fixed

.subset E of IRn; determine whether or not a given element u € X



is the 1limit in some designated topology of bounded measures contained
in X. In Domar's case the Fourier transform of X 1is a subset of
Lw(IRn) and the topology is weak % convergence. This is the setting
of Beurling's classical spectral synthesis problem based ultimately

on Wiener's Tauberian theorem. Domar considers the case in which E
is a curve in IR2 and he characterizes spectral synthesis in terms
of the curvature of E. He also solves some analogous problems for
manifolds E in IRn, n = 3, and obtains spectral synthesis results
in terms of the geometric properties of E. In Hedberg's case, X

can be any one of a large collection of Sobolev spaces and the topo-
logy is the Sobolev space norm topology. This is the setting in which
the spectral synthesis property for all elements of X 1is equivalent
to the stability, in the sense of potential theory, of closed sets
essentially complementary to E. Hedberg verifies this equivalence

in various Sobolev spaces, and analyzes and generalizes Wiener's
criterion for regular points in order to characterize Sobolev space
spectral synthesis.

The second category of problems deals with the harmonic analysis
of operators of LP spaces. These problems have emerged from the
research of Zygmund, Calderdén, and Stein, as well as several of our
guests. The omnipresent Hilbert transform H and its generalizations
are an essential feature of the area, and multipliers, maximal functions,
gP theory, and interpolation are some of its major topics.

In order to verify various LP  estimates for H and related
operators, R. COIFMAN and Y. MEYER presented a range of real and com-
plex methods, from Boole's symbolic calculus of over a century ago to
the latest 9 proofs of Calderdén's theorem. Boole's theory systemati-
cally uses measure preserving maps and has long been a staple for
ergodic theorists; in harmonic analysis it provides a means to calcu-
late the distribution function of H. Large parts of Coifman's and
Meyer's lectures were given in the context of commutators and bilinear
maps. Commutators of H are used in the study of boundary value
problems for elliptic equations, and they arise naturally when one
wishes to extend the classical L2 estimate for H to curves. Next,
G. WEISS, in joint work with several others, set forth a theory of
interpolation which includes the Riesz-Thorin theorem and Stein's
theorem for analytic families of operators. He dealt with a continuum
of Banach spaces associated with the boundary points of a domain
D ¢ ¢ and constructed intermediate spaces for each point of D.

The basic interpolation result is stated in terms of subharmonic
functions. An interesting corollary of the theory is an extension of

the celebrated Wiener-Masani theorem which, in turn, provides important



factorization criteria for certain filtering and prediction problems.
Finally, A. CORDOBA solved several specific problems involving a
thorough mix of many of the real methods in this second category of
problems and concepts. The first result settles a basic real variable
question on the differentiation of integrals and depends on a covering
theorem and estimates on the appropriate maximal function. The re-
maining results include a rather complete theory for multipliers

arising from classical summability methods.

We wish to thank Berta Casanova, Cindy Edwards, Pat Pasternack,
Becky Schauer, and June Slack, of our technical typing staff for their
expert work; and to express our appreciation to Alice Chang, Robert
Dorfman, Ward Evans, Raymond Johnson, and C. Robert Warner for their

editorial assistance.
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SOME ANALYTIC PROBLEMS RELATED TO STATISTICAL MECHANICS

Lennart Carleson
Institut Mittag-Leffler

Apology. In the following lectures, I shall give some analytic
results which derive from my interest in statistical mechanics. I do

not claim any new results for applications, and any serious student of
statistical mechanics should consult other sources. It is my hope that
analysts will find, as I have, that interesting and difficult analytic
problems are suggested by this material; and that they will eventually

make contributions of real significance in applications.



I. Classical Statistical Mechanics. Background

1. We consider a system of N particles moving according to a

Hamiltonian function
H(p,q) = H(Pl""’p3N’ql""’q3N)'
The classical equations for the motion are

icl: 5, @ —<iH

(1) q, = 5 .
1 api 1 aqi

p; are the momenta and a; the position coordinates for the particles.

It follows that H(p,q) is constant during the motion and H is inter-

preted as the energy of the system. A typical situation is

_ 1y 2 N~ ~
H(p,@) = Flpj* izj #3454 93 7 (43541° 93i+2> 93i+3).
We now assume that the motion takes place inside a box Ay of vol-
ume wp—lN, where p 1is the density of the particles. The total en-
ergy H = EN ~ AN, so that A 1is the average energy per particle.

Denote by do the surface element of the energy surface ZN in

the 6N-dimensional space { of points o = (p,q).
The basic assumption of statistical mechanics is now that the mo-

tion w(t) is ergodic on the energy-surface, i.e.,

T J o(p,q)do
. .1 . z
1im 1lim T J w(wN(t))dt = 1im —N
N—eo  Tosoo 0 N-eo O(ZN)

at least for simple functions ¢ depending on a finite number of vari-

ables and belonging to cr Actually, from a physical point of view it

0°
is more natural to assume that

1 T
lim 7 J e(w(t))dt
Tseo 0

exists, where T avoids a set of density zero. We then speak of
the Gibbs limit. A natural assumption here is also that we are dealing
with a bounded number of different particles, and therefore have a cor-
responding number of symmetries in the function H. I shall not formu-

late this in more detail; the meaning in concrete cases is quite clear.



Gibbs' contribution here is that he has given a formula for comput-

ing the density do/oc(2) = dp. Let us observe that

do = dodE in &

N
Let B be a parameter and consider
F(p) = J e PE gp = J e PE ay(p)
@ 0

where V(EO) is the volume IE<E dw. By partial integration

0

F(p) = BJ e PEy(E)aE.
0

The dependence on N 1is now such that
E = Ne V(E) = v (e)NC where v, (e) — v(e)
2 N N’ N bl

and v(e) 1is expected to be a smooth function. We are dealing with an

integral essentially of the form

“ - ]
I = ¢ J o~NIBE-¥ ()] 4o
N N
0
where V(t) 1is an increasing function bounded from above. If we
define
(2) -v¥(8) = sup(y(t)-gt)
t
we realize that
Iy(e) = e NVF(B) L oonst.
and
- NY(t,) -Nv*(8)
0 -NBt _ e ;
IN(B) = CNJ e - e dt = Const. ———
t
0
Hence I and so F(B) get their essential contribution from the sur-

N
face t where the supremum is taken.

¥*(B) 1is the Legendre transform of ¢ (t). Observe that
vit) + y*(p) = Bt.
Hence
VR oz v

and y** is the smallest convex majorant of V.



Only those values of B which correspond to linear pieces in V**%
give ambiguous values of t in (2). We have

—\J/*(B) = y(t) - Bt and y'(t) = B8
so that

') = ot if v" £ 0.

If the graph of ¢** contains a straight line then w* shows a corner.

Hence, if V¥* ig smooth, then y** isstrictly convex.

Going back to FN(B), the proper definition is

log F,(B) - 1log C
£(8) = lim o N

N>

Unless the energy surface is one of the exceptional values for which we
have ambiguity in t we can choose B so that the integral in the def-
inition of F(B) 1is carried out essentially on the right energy sur-
face. 1If

e—BEdmN
"eon T OTE Y
then it follows that
f ¢(p,q)dp = 1lim J o(p,q)du -
J Nooo Bs
and this is Gibbs' rule. We also see that we can expect exceptional

results if f(B) has a singularity—in these cases it is not clear that
the formula gives the correct result.

In the case of the simple Hamiltonian,

1 2 T
vl z Pi + E é(qi_Qj)a

the first integral over p gives

.
2y
cNg 2

Classical thermodynamics tells us that we should interpret B as

an inverse temperature. The second part is

dq

-B2#(q,-q.)
J
fk.‘[ e l...dq3N.

N

It was proved only rather recently by Ruelle that f(B) does indeed

exist in a case like this. The problem of regularity of f is,



however, still unsolved. Here we shall give some related results, not-
ing that f(B) 1is always analytic for small 8.
The problems we have dealt with are closely related to a problem

in probability, viz., the problem of large deviations. This was studied

by Cramér and Feller and the following results which we need later are
well known.
Let Xl’XZ""’X be real stochastic variables with identical dis-

N
tribution and assume

AX

E(e™) = F\) < .

We are interested in

N -NuN(t)

Prob({ X: > tN) = e R t > E(X).

1 J
Clearly,

o -Np, (t) I N t=-p, (t))

rooN = -J e”Nd<e N = ow [ e NTT e,

= s

Hence,
0 N ()
JMASERRY oy exp{N(inf(xt-uN(t))}J g 5 o T
t —o
and
Np¥(n) N2 Np¥ (0
JNlogF(M) _ N j dt = N2 e M
0
Therefore,
% _ log N
uN(X) = logF(\) + 0 (—7¢——>.

Since 1log F(\) 1is smooth it follows that

lim uN(t) = sup(it-log F(A\)).
N> A

In a similar way one can compute high moments

N
X +ee+X =
E((%—) ) ~ ebN, E(X) > 0.

Xy

One finds that
A
b = aloga - alogh - a + log E(e

AX
X E(Xe™ ™)  _ _

E(e™)
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2. In the general case, the motion described by (1) is extremely
complicated. Boltzmann introduced a random element in the description
of the motion, which is highly plausible but just as difficult to ver-
ify. The classical theory concerns elastic collisions between particles
assumed to occur in a random fashion. Here we shall present an extreme-
ly simple but at the same time very general model which contains some
of the characteristics of the Boltzmann theory.

Suppose we have a system of n particles, each in one of N states,
N << n. We should think of the state as a given position and velocity.
At each time the particles in states (i,j) can interact and go over
to the states (v,u). The proportion of particles (v,p) which arise

in this way is
Vi
A7Yp; (Dpy(Dat,

where pi(t) is the proportion of particles in state i at time t.

The matrix A;H is assumed to safisfy
15 .
(3) A;g = A§; = Ava = By (i,3) # (v,u).
We set
() AVH = ¥ Ayl

b (1,9)#Cv,uw)
For pv(t) we obtain in this way the differential equations
' _ - VL
p,(t) ‘ Z Aijpi(t)pj(t),
1,]s5H
which is a general discrete Boltzmann equation. It has many features

of the usual equation, and the proofs are, of course, all very easy.
N
A L p.(t) = 1.
v
1
Proof. By (4) it follows that

N
Y piCt) = ¥ A;Hpi<t>p.<t) = 0.
mE v iajaVsl-L J ]

(B) p,(t) =z 0.

Proof. Suppose first that a, = pV(O) > 0 for all v and that if

pv(t) = 0 then pu(t) # 0, W # v. By analyticity this set .of
a; s is dense. Suppose now that pv(to) = 0 and pi(t) > 0 for
0=t<t and for all i. Then

0



11

' _ Vi Vi Vi
p'(t) = p () Y} (AM+aA¥) p.+ ] AYYp.ps,
v v Sk vj Jv j P P ok q
i.e., an equation p; = op, + f, where f z 0 on (O,to). Hence,
i€
g(t) = p exp —( edt
v JO

is non-decreasing on (O,to). Since g(0) > 0, it follows that pv(to)
-~ 0 which is a contradiction. The general case follows from density.

N

(<) H(t) - pv(t)log pv(t) is non-decreasing.
i

Proof. H'(t) - AYHp.p.long

o @ . 1=
15]5VHl 1 1

= _d Vi
= -7 I Ajjp;pyQlog p +log p)

— Vi B - =
= =3 ) A[ip;pj(log p,* log P, log p; - log pj)

il e
PP
_ 1 VL v
= -= AV (p.p: - )1lo =z 0.
T L Aj5(pypy-p,p ) log 5;5?
There is equality if and only if pipj = pvpLL whenever AE% £ 0.

(D) Let A be the linear space of vectors A\ = {XV}§ such that

N N

YA p (£) = y axp (O

\J:l vV v=1 AV
for any choice of initial values pv(O). A is called the invariants
of the motion. 1In classical theory they are the moments and the energy.
Here we first have the trivial invariant X = {1}.

. : Vi
X € A if and only if A.. # 0 =X, + X. = A+ X .
13 1 ] v B

We can therefore interpret A as an additive invariant under possible

interactions.

Proof. Assume A satisfies the condition. Then

N
% o - o = 17 aV¥ B By - R PPape B
% yPy (1) ) Aijxvpipj 22 Aij(XV+ g Y j)plp] 0.
Assume, conversely, that |} A;?XVpipj = 0 for all P; z 0 for which

2? p; = 1. We may also assume that EXV = 0. It follows that the

quadratic form has to be a constant multiple of (Zpi)Z, i.e.,



12

T AYtOon +n ) = c.
Vil +J v e
Consider
ARG +x -, =202 = T AYRIOL +a )2+ (o #0023
i3 %y u 1 ] 19 v n i N
-2 7 ARG Fa) (0 +0).
Ty - 3 v "
The first sum vanishes. The second equals
-C ‘2_ (xi+xj) = 0
1,3
Hence,
\
“he H A = %+ if AYM g 0.
- J v 38 1]

(E) Let us now assume that the system is "ergodic" in the follow-
ing sense. Let E be any set of indices. Let E = {v|3p and 1i,j€E
with A;? # 0}. Then the system is called ergodic if for any set E,

El = E, ’E2 = El""’Ek=fk-l’ and Ek=a11 indices for k large enough.

We choose t_ - » so that p (t_ ) -~ . By (C),
n v n v

(5) Tem. = WM if avt 2 o,
vou i)

Let E be the set where ", # 0. If i,j € E and A;? # 0 it follows
that wv,u € E. Hence, E = E and it follows that E = all indices,
i.e., My o# 0 for all 1.

We have

- m, log m = = H()

and

Y omo = ¥ pv(O)XV.

v Vv
By (5), log ", is an invariant, i.e.,

LI exp{—z c(x)xv}.

Finally, let X, solve the extremal problem

sup(-) x log xv), ) x A, = ) Kk, and X € A.

By the Lagrange theory we have

x, o= exp{—% d(x)xv},
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and Z, is unique by Jensen's inequality. We have

Z X, log n, = Z ", log L and z ", log X, = Z X, log 2.3
since log L and log x, are invariants. Hence,
= - + =
0 Z(nv log X X log X % log " " log "v)

m
v -
Z(XV-nv)log % - 0,

which gives = X .
v v
Let us summarize the result in a theorem.

Theorem. Let (A;?) be an ergodic transition matrix. The limits,

lim pv(t) = T
oo
exist and m, > 0. {log nv} is an invariant and {nv} maximizes the

entropy H for all distributions with given invariants.

II. The Harmonic Oscillator

1. We consider a model where a particle PV is placed at each
point of a lattice. Many results would be true in the several dimen-
sional case but for simplicity, let us assume that the lattice is Z%.
The particles make small oscillations and the movement is governed by

the Hamiltonian

H( >-£’§ +I§ = 112 + v
NPs® = g le,tlag g, s il UCq).
We assume a, =a_ and that U(q) = 0, i.e.,
o ivx
AN(X) = }ﬁ ae =z 0.

When N - «, AN(X) -+ A(x), and we assume a6 ~ 0 sufficiently rapidly.
The Gibbs' theory is in this case trivial. The free energy is

(. B2
N log F,(B) = logij e 2|pl dp J éﬁtxq)dq} = =-N log B + C
2 Fy N

so that F(B) = CB. The connection between energy and B8 is simple.

We write



