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Preface

The aim of this book is to provide reliable information not only on the
science of crystallization from solution and from melt but also on the
basic design methods for laboratory and especially industrial crystallizers.
Up to now the niche between scientific results and practical design and
operation of large-scale crystallizers has scarcely been filled. A work devoted
to this objective has to take into account relevant crystallization phenomena
as well as chemical engineering processes such as fluid dynamics, multiphase
flow, and heat and mass transfer. In the design of crystallizers, experiments
are initially performed on laboratory crystallizers to obtain kinetic data. In
this book, information is given on reliable scale-up of such crystallizers. The
selection, design, and operation of large-scale industrial crystallizers based
on fundamentals is the most significant objective of this work. To this end,
an appendix listing important physical properties of a large number of
crystallization systems is included. A selection of design data valid for indus-
trial crystallizers with volumes up to several hundred cubic meters demon-
strates the applicability of the design and scale-up rules.
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Physical and Chemical Properties of
Crystalline Systems

A. MERSMANN Technische Universitdt Miinchen, Garching, Germany

Unlike crystallization from melting and freezing, heat transfer is not the
decisive process in cystallization from solution because the properties of
the crystalline product depend primarily on supersaturation generated by
cooling, evaporation, drowning out, or a reaction. The quality components
of the product (i.e., its crystal size distribution, its median crystal size, its
purity, and its crystal shape) are strongly influenced by (a) the geometry and
type of the crystallizer, (b) the operating conditions, and (c¢) the properties of
the liquid and solid phases.

The requirements of the product rather than the method of creating
supersaturation are decisive when selecting a crystallizer. In an industrial
crystallizer, there is such a variety of complex processes that it is difficult for
the chemical engineer to decide on a suitable procedure for the design of a
full-scale apparatus. Therefore, let us consider some general guidelines.

If the aim is to obtain a certain product having a specific crystal size
distribution, grain size, and purity instead of a random product, it is
necessary to control the local and mean supersaturation as well as the
residence time of the solid in the supersaturated solution. Supersaturation

1



2 Mersmann

is a prerequisite for nucleation and growth, which are decisive not only for
the formation of a solid phase but also for its occurrence (i.e., size distribu-
tion of crystals and their shape). The degree of supersaturation is deter-
mined by the flows of materials and energies, on the one hand, and by
crystallization kinetics, such as nucleation and growth, on the other hand.
In addition to the conservation laws of materials and energy, the population
balance is very important because in most cases, a crystalline product with a
certain size distribution is required. With respect to this fact, it is necessary
to take into account processes that influence the population balance (i.e.,
mainly agglomeration for very small crystals and attrition for large crystals).

As a rule, crystals have a higher density than that of the surrounding
liquid, which results in settling. Therefore, a certain upflow current is needed
in all crystallizers to compensate settling. As a result, crystallizers are
equipped with rotors, such as stirrers or pump impellers, which can cause
attrition of large crystals. In addition, the quality of a crystalline product
may depend on the fluid dynamics of the slurry in the crystallizer. As a rule,
the distribution of supersaturation and solid material in a crystallizer
depends on the process of macromixing. This may be important for coarse
crystalline products. With drowning-out and reaction crystallization, the
local supersaturation is influenced by the process of micromixing (i.e., mix-
ing on a molecular scale). Finally, the production rate of an industrial
crystallizer may be high or low. As a rule, continuous crystallizers are
used in the case of high production rates because this operation is more
economical with respect to investment, energy, and labor costs. If several
products are to be crystallized in the same crystallizer, a batch crystallier is
chosen. Sometimes, crystallizers with circulating slurry or with fluidized
beds are used instead of stirred vessels. As will be shown later, the fluid
dynamics and, consequently, phenomena such as mixing and attrition differ
substantially in such apparatus. Therefore, it is necesary to provide detailed
information on the various crystallizers and their flow behavior. As stated
earlier, the most important process parameter is supersaturation, or the
difference between the actual concentration and the equilibrium concentra-
tion of the liquid.

1. MEASURES OF SOLUBILITY AND
SUPERSATURATION

First, information on the phase equilibrium of solid-liquid systems and
solubility and melt diagrams will be presented. Crystallization from the
melt is described in detail in Chapters 13 and 14. However, because there’
is no distinct boundary between crystallization from solution and crystal-
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lization from the melt, it is reasonable to regard phase equilibria diagrams in
a general way. It will also be shown how crystallization processes can best be
represented in enthalpy-concentration diagrams. Important basic principles
of thermodynamics are followed by an explanation of the essential pro-
cesses: the rate of nucleation and crystal growth. It is precisely these kinetic
parameters that determine the crystal size distribution of a product having a
large number of crystals. First, however, let us take a look at concentration
and supersaturation measures.

The number of collisions of elementary units (atoms, ions, molecules)
with those in the fluid phase or at the phase interface of the crystalline
phase depends on the number of units per unit volume of the fluid phase:

\

Number of units nNy — CN, (1.D

Volume of fluid phase 7

where € (mol/L or kmol/m® is the molar concentration and N, is
Avogadro’s number. For reasons of practicality, mass concentration ¢ is
often used:

~- [kmol kg kg g g
c=¢ [ m’ km01:| ot [m3 dm? 1 , (1.2

In addition to these volumetric concentrations, it is convenient to use mole
or mass fraction y or w as well as mole or mass ratios Y or W (generally, ¥
and Y should be used in the fluid phase and X or x in the solid phase). A
scale is often used to determine the mass that can be converted to the
amount of substance if the molar mass is known. Table 1.1 provides infor-
mation on definition and conversions.

A saturated fluid phase having concentration C* or ¢* is in thermody-
namic equilibrium with the solid phase at the relevant temperature. If the
solution 1s liquid, the saturation concentration often depends strongly on
temperature but only slightly on pressure. If a fluid phase has more units
than C*N,, it is said to be supersaturated. Crystallization processes can take
place only in supersaturated phases, and the rate of crystallization is often
determined by the degree of supersaturation. Supersaturation is expressed
either as a difference in concentration

AC=C—-C" or Ac=c¢—" (1.3)
or as relative supersaturation
C -
S:F:CL—* or 6=S-1 (1.4)

Generally, differences or ratios of molar and mass fractions can also be
used; however, precise and detailed information is always required when
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the crystalline phase integrates (e.g., solvents, as is the case with all
hydrates). The ratios kg anhydrate/kg solvent and kg hydrate/kg solvent
are always different and, therefore, so are the supersaturation values. The
dimensionless supersaturations S and o also often vary considerably
depending on whether, for example, values of o, = AC/C*, a0, = Ay/)*,
03 = AY/Y", 04 = Aw/w", oros = AW/W" are involved. These statements
also show that the expression of supersaturation as a percentage is entirely
insufficient.

If the phase involved, is a vapor or gaseous supersaturated phase, it is
often useful to use partial pressures instead of concentrations. If the ideal
law of gases applies, the following is valid:

P . DM
= e 1.5
C=xr ¢ T NT (1)
or
P M
S — l.
C R C T (1.6)
This gives the following relative supersaturation for isothermal systems:
c_»r
S=—== 1.7
C* plr ( )
and
o=L"F (1.8)
P

Generally, it can be said that the difference in chemical potential Ay = up
— e between the fluid (index F) and the cryal (index ) phases is the kinetic
driving force, which can be described via the relationship among the che-
mical potential g, standard potential pg, the activity a, and the heat of
crystallization AHcq:

w=y+MNTIna (1.9)
or
A P DK | (a)— InS lution) (1.10a)
,LL:mT—Una* =viInS, (solu .
N A AT
— — 1.10b
An N T (melt) ( )

with the undercooling AT.



