| ecture Notes In

Computer Science

Edited by G. Goos and J. Ha&manis Ay
59
Edward Hill, Jr.

\

A COmpajrative S’tu’dy :
~of Very Large Data Bases

Springer-Verlag L
Berlin Heidelberg NewYork .



Lecture Notes In
Computer Science

Edited by G. Goos and J. Hartmanis

59

Edward Hill, Jr.

A Comparative Study_

of Very Large Data Bases

Springer-Verlag
Berlin Heidelberg New York 1978



Editorial Board
P. Brinch Hansen D. Gries C. Moler G. Seegmiiller
J. Stoer N. Wirth

Author

Dr. Edward Hill, Jr.

Division of Computer Research
and Technology

Building 12 A, Room 2041 B
National Institute of Health

9000 Wisconsin Avenue
Bethesda, Maryland 20851/USA

AMS Subject Classifications (1970): 68-02, 68 A20, 68A50, 68 A99
CR Subject Classifications (1974): 4.33

ISBN 3-540-08653-6 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-08653-6 Springer-Verlag New York Heidelberg Berlin

This work is subject to copyright. All rights are reserved, whether the whole
or part of the material is concerned, specifically those of translation, re-
printing, re-use of illustrations, broadcasting, reproduction by photocopying
machine or similar means, and storage in data banks. Under § 54 of the
German Copyright Law where copies are made for other than private use,
a fee is payable to the publisher, the amount of the fee to be determined by
agreement with the publisher.

© by Springer-Verlag Berlin Heidelberg 1978

Printed in Germany

Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr.
2141/3140-543210



This monograph presents a comparison of methods for
organizing very large amounts of stored data called a very large data
base to facilitate fast retrieval of desired information on direct
access storage devices. In a very large data base involving
retrieval and updating, the major factor of immediate concern is the
average number of accesses to the direct access storage device to
complete a request, The average number of accesses to store and
retrieve items on a direct access storage device for hashing methods
using chaining with separate lists and linear probing is presented.

A new algorithm and performance measures for chaining with coalescing
lists is presented. New performance measures are presented for
storing and retrieving with a binary search tree and a trie stored on
a direct access storage device. Algorithms are presented to perform
retrieval, insertion, deletion and the inverted file generation
operations for an inverted file. New performance measures are
presented for an inverted file. The methods are developed using a
component concept, A hybrid method involving components is used for
the linked filles, All methods are analyzed, along with their data
structures, to show their effect on the average number of accesses to
the direct access storage device while processing a request.

Finally, a comparison criterion is developed and each method is

compared,



\Y

This monograph is based on a D.Sc, dissertation submitted

to the Department of Electrical Engineering and Computer Science at

The George Washington University in 1977,



I am indebted to many people who have contributed in a
variety of ways to the completion of this monograph.,

First of all, I owe a great deal to Prof. A, C. Meltzer
who served as my advisore Prof. A. C. Meltzer deserves thanks
for encouraging me to investigate what has now become the topic of
this monograph.

Thanks to Dr. Eugene K. Harris and the Division of Computer
Research and Technology of the National Institutes of Health, for
their support in my studies in Computer Science.

I am indebted to my wife, Espor and my children Eurica and
Edward for their love, understanding and support during the many
hours this work has kept me from them.

Finally, I am indeed thankful for my parents Edward and
Gertrude who sacrificed so much to aid me during the initial years of

my careere.



3.

INTRODUCTION

TABLE_OF CONTENTS

DATA BASE STRUCTURE

2.1, Record Structure

2.2, Data Structure

2.3. Available Space Management

DIRECT ACCESS DEVICES

3.1, Direct Access Terminology

RECORD PROCESSING USING HASHING METHODS

4.1, Record Addressing Terminology

4,2, Chaining With Separate Lists

4.2.1.

4.2.2,

4.2.3,

4.2.4.

4.2.5.

4,2,6.

402,77

Retrieval Algorithm

Retrieval Time

Insertion Algorithm

Insertion Time

Deletion Algorithm

Deletion Time

Storage Space Requirements

4,3, Chaining With Coalescing Lists

11

11

15

17

18

19

21

22

23

24

24



Vil

4,3.1. Retrieval And Insertion
Algorithm

. Retrieval Time

4,3.3. Insertion Time

4.3.4. Deletion Algorithm

4,3.5. Deletion Time

4,3.6. Storage Space Requirements
4 .4, Linear Probing

4.,4.1. Retrieval Algorithm

4.4.20 Retrieval Time

4,43 Insertion Algorithm

4,4,.4, Insertion Time

4 sWeSe Deletion Algorithm

404,60 Deletion Time

4,48.7 Storage Space Requirements

4.5, Summary

RECORD PROCESSING USING TREE METHODS
Sele Tree Searching Terminology
Se2a Storing TREE And Binary Tree
Se2ele Retrieval Algorithm
Se2e2«. Retrieval Time
Se2e3e Insertion Algorithm
Se2.4. Insertion Time
Se2.5. Deletion Algorithm
Se2e6e Deletion Time

Se2eTe Storage Space Requirements

24

27

29

29

30

30

30

31

32

34

3s

36

37

37

37

40

40

s2

60

64

65

69

69

72

72



6.

S.3. Storing TRIE

S.3.1.

S5.3.2.

Se3.3.

Se3.4.

Se3.5.

S.3.6.

S5.3.7.

Se4. Summary

Retrieval Algorithm

Retrieval Time

Insertion Algorithm

Insertion Time

Deletion Algorithm

Deletion Time

Storage Space Requirements

RECORD PROCESSING USING LINKED FILES

6.1, Storing Linked List Files

6.1.1,

6.1.2,

6.1.3.

6.1.4.

6.1.5.

6.1.6.

6,17,

6.2. Storing

6.2.1.

Retrieval Algorithm

Retrieval Time

Insertion Algorithm

Insertion Time

Deletion Algorithm

Deletion Time

Storage Space Reguirements

Double Linked List Files

Storage Space Requirements

6.3, Storing Ring List Files

RECORD PROCESSING USING INVERTED FILES

7.1e Generation Of Inverted File

7Te2e Load Time

7.3 Retrieval Algorithm

73

73

73

74

75

75

75

75

76

79

80

81

82

83

84

84

84

84

85

8S

86

87

90

94

99



7.4. Retrieval Time

7e5e Insertion Algorithm

76 Insertion Time

Te7e Deletion Algorithm

7.8, Deletion Time

7e9a Storage Space Requirements

7-.10. Summary

8, COMPARISON OF NETHODS

8.1, Criterion For Comparison

8,2, Comparison

8.2.1.

8.2.2,

8.2.3.

8.2.4.

8.2.5.

8.2.6.

8.2.7.

8.2.8.,

9. CONCLUSIONS

Load Times

Retrieval Times

Insertion Times

Deletion Times

Storage Space Requirements

Variable Length Keys

Fixed Length Keys

Hybrid Methods

9.1, Conclusions

Appendix A, Glossary of terms

References

100

103

103

103

104

104

105

106

106

108

108

109

123

123

123

124

124

130

134



CHAPTER 1

INIRODUCIION

This monograph is a comprehensive investigation of
me thodology for organizing very large amounts of stored data called a
very large_data base. This investigation surveys the existing
me thods and presents a new unified notation and approach for
evaluation and comparison of these methods, New storage and
retrieval algorithms are designed and developed and performance
measures for all methods are established. Comprehensive performance
evaluations are carried out for each method as a function of critical
design parameters, Comprehensive tables and graphs are presented
which permit a direct comparison of method performance. The
me thodology studied here is designed to facilitate rapid storage and
retrieval of information which is stored on a direct access storage
device.

In a very large data base involving retrieval and updating,
the principle concern is the average number of accesses to the direct
access storage device to complete a request, Methods and their
associated data structures, are analyzed to show their effect on the
average number of accesses to the direct access storage device
required to process a request, A comparison criterion is developed

and each method is analyzed for a measure of its performance,



The size of a data base may be characterized by the number
of entities it concerns and the average number of retrieval terms
that apply to information about each entity, A data base in which
all pointers, lists and indices reside on a disk is called a very
large data base.

Very large data bases are justified only in very large
svstems, involving many users using large computer complexes and
ne tworks, The analysis presented here is concerned with the problem
of designing large systems for processing data bases.

High efficency in processing, storage usage, and retrieval
is extremely important in processing a very large data base. An
inefficient organization of the data base may account for a very
large number of disk accesses and result in impractical processing
times, The number of disk accesses is strongly connected to the data
base data structure and its processing algorithms, The proper data
struc ture and search algorithms will reduce the number of disk
accesses, initial load time and data update time.

The approach taken in this monograph is one of synthesis.
The simple component parts of various search techniques and their
associated data structure are analyzed. These components are used to
compare Structures for various component organizations, The primary
components are files of physical records and addressing mechanisms
used to locate records.

The purpose of Chapter 2 is to introduce a set of concepts
which is fundamental in defining both a data structure and a search
struc ture for very large data bases, To compare very large data
bases, it is essential that each component of the system be well

defined, Chapter 2 introduces definitions that give the structures



of the data base precise meaning.

Chapter 3 introduces the necessary direct access storage
device terminology to analyze algorithms. Since the data base and
all pointers are stored on a direct access storage device these terms
influence the implementation of any algorithm to search and store
records in the data base.

Chapter 4 introduces record processing methods using
hashing. The methods analyzed are chalning with separate lists,
chaining with coalescing lists and linear probing, denoted by cs, CC
and LP respectively,. A new search algorithm using coalescing list is
introduced and analyzed. New performance measures are presented for
chaining with coalescing lists using a general bucket size. A
mixture probability distribution is developed to apply the 80-20 rule
using the performance measures,

Record processing using tree methods are introduced in
Chapter S, Tree methods are summarized. Algorithms are presented
for TREE and TRIE. New performance measures are presented for the
TREE and the TRIE. The notation for the TREE and the TRIE is BS and
T respectively.

Chapter 6 introduces record processing using linked files,
denoted by LL. The component approach used in this monograph is
demonstrated. The directory search is by linear probing and the list
of files are organized using the chaining with separate list method.

Record processing using an inverted file structure is
presented in Chapter 7. The notation used for the inverted file is
IF. Algorithms are presented and analyzed for the retrieval,
insertion, deletion and inverted file generation operations. New

performance measures are presented for an inverted file.



In chapter 8 a criterion for comparison of large data bases
is presented, The concepts defined in earlier chapters are used to
define various attributes of the comparison criterion. The attribute
list is used to define a comparison operator. This comparison
operator defines precisely the methods, distribution, relation and
other attributes in every comparison.,

Chapter 9 presents the conclusions which have been reached

on the basis of this research,



CHAPTER 2

DATA_BASE_STRUCTURE

This chapter defines the record structures and data
structures for the data bases used in this monograph. A collection
of data, organized in some fashion, is called a data base. Within a
data base both organization and content assume importance.
Organization of a database consist of the grouping of records and the
ordering of records within those groups. This 1s done to increase
the chance of locating known data. It is not enough to know that a
particular data item may be in the data base; one must also know how
to find it.

Search algorithms are used to locate records in data bases.
Two factors that affect search algorithms are the record structure
and the data structure of the data base. Basic definitions for a
record structure and data sStructure are presented in this chapter.
This is done to explicitly define the notions that are used in later
chapters,

2.1, Record Structure

The basic unit which is processed in a data processing
system is called an item_or_record. An item is made up of two parts:
the key and the data, A key K is that part of a record that

distinguishes the record from all other records. The length of the



key is the number of digits or characters in the key. The data is
that part of a record which is not the key. A set of records is a
file, and a set of files is called a data_base.

2.2. Data Structure

The structures discussed here are those relationships that
exist between records and files in a data base. Many definitions
used are modifications of those in references [10, 20, 35].

The basic unit in a data structure is called a node. A
node may consist of a key, data, record, file, or a data base. A
structure that involves only linear relative positions of the nodes
is called a linear_list. When the list nodes are modified in a way
such that one node contains the address of its successor in addition
to its normal content , the list is a linked list and the address is
called a pointer. A linked list contains a special node to indicate
the last node in the list called the termination node. Most lists
are allocated from a linked area of storage called an avajlable
storage pool. Therefore, every list must have a pointer to the
beginning of the list., A variable (called a link variable) points to
the first node of a list and contains the address of the first node

of the list., An example of a linked list with a link variable called

FIRST is illustrated in figure 2.1.

FIRST [ PR S—— PN S ormadiaad &

Figure 2.1, Linked List.



A special node in a list located at the beginning of the
list, is called a list_head. Many times it is necessary to organize
a list where in the last node points to the first node. Such a list
is called a circular_linked ljist. In a circular linked list,
sometimes called a ring list, it is a common pratice to include a
list head node, The list head node is useful in many search
algorithms using lists, because it indicates a node with known
attributes,

Often, it is necessary to have two pointers in each node.
A list with two pointers in each node, where one points to the node
predecessor called the left link (LLINK) and the other points to the
node successor called the right_ link (RLINK), is called a double

linked list. An example of this structure is presented in figure

LEFT gt —tiy -—l oe4—» RIGHT

Figure 2,2, Doubly Linked Lists,

For large files the lists tend to be long, and extended

Searches may be required if the list length is not controlled.

In all lists discussed so far the list lengths were unrestricted

and each list had one starting point. By restricting the list



