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Editorial Policy

§ 1. Lecture Notes aim to report new developments - quickly. informally, and at
a high level. The texts should be reasonably self-contained and rounded off. Thus
they may, and often will, present not only results of the author but also related
work by other people. Furthermore, the manuscripts should provide sufficient
motivation, examples and applications. This clearly distinguishes Lecture Notes
manuscripts from journal articles which normally are very concise. Articles
intended for a journal but too long to be accepted by most journals, usually do not
have this “lecture notes™ character. For similar reasons it is unusual for Ph. D.
theses to be accepted for the Lecture Notes series.

§ 2. Manuscripts or plans for Lecture Notes volumes should be submitted
(preferably in duplicate) either to one of the series editors or to Springer- Verlag,
Heidelberg . These proposals are then refereed. A final decision concerning
publication can only be made on the basis of the complete manuscript, but a
preliminary decision can often be based on partial information: a fairly detailed
outline describing the planned contents of each chapter, and an indication of the
estimated length, a bibliography, and one or two sample chapters - or a first draft
of the manuscript. The editors will try to make the preliminary decision as definite
as they can on the basis of the available information.

§ 3. Final manuscripts should preferably be in English. They should contain at

least 100 pages of scientific text and should include

- a table of contents:

- an informative introduction, perhaps with some historical remarks: it should be
accessible to a reader not particularly familiar with the topic treated;

- a subject index: as a rule this is genuinely helpful for the reader.

Further remarks and relevant addresses at the back of this book.
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Introduction

This work wants to reveal some of the intimate connections that exist between the
étale site of a scheme X and the orderings of the residue fields of X . The emphasis
is laid on cohomological aspects. It is well known that the existence of an ordering
on some residue field influences directly the qualitative behavior of étale cohomology.
For a basic example take X to be the Zariski spectrum of a number field k. If %
is totally imaginary then H,(X,A) = 0 for n > 2 and any torsion coefficients A.
But if & is real then H!,(X,Z/2)# 0 for any n > 0.

More generally, it is often felt that étale cohomology with 2-torsion coefficients
has “bad” properties if there exists an ordering on some residue field of X: and so
this case has frequently to be excluded or needs special consideration. The existence
of an ordering implies H!,(X,Z/2) # 0 for all n, no matter how well-behaved
X is otherwise, and no matter what the cohomological 2-dimension cd,(X!,) of
X' = X[v/~1] is. The infinity of cd,(X,,) is in some sense accidental, and a more
sensible cohomological dimension is exhibited only after killing all real phenomena
by adjoining a square root of —1, i.e. passing to X'. But this being said, what then
1s the significance of the groups H}, (X, A) for n > 0 and A 2-torsion?

I propose that there is a very satisfactory answer to this question. The orderings
of all residue fields of X form a topological space X, the real spectrum of X . It
turns out that étale cohomology of X (with 2-primary coeflicients) is in high degrees
just cohomology of the real spectrum X, ! This is not a very precise formulation.
but for the moment it gives the right idea about one of the main results of this

treatise.

Before I summarize the contents of this book more systematically, I would like
to sketch what was the “point of departure” for this work, and then to highlight
some of its main ideas.

I was drawn to the questions treated here when I studied the paper Real com-
ponents of algebraic varieties and étale cohomology by Colliot-Thélene and Pari-
mala [CTP]. Let X be an algebraic variety over the real numbers R, and denote
by H"™ the Zariski sheaf on X associated with the presheaf U — HI(U,Z/2).
The main theorem of [CTP] says that if X is smooth, there are canonical isomor-
phisms H°(X,H") = H°(X(R), Z/2) for n > dim X . More generally, the result is
proved over arbitrary real closed fields, where classical topology is replaced by semi-
algebraic topology. An essential ingredient of the proof is quadratic form theory,
and in particular, Mahé’s theorem on the separation of real connected components

by such forms.
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When I was discussing some simplifications and generalizations with Colliot-
Théléne, he pointed out to me Cox’s paper on the étale homotopy type of R-
varieties [Co]. From Cox’s results one could easily deduce the main theorem of
[CTP] for arbitrary, not necessarily smooth R-varieties. But what was needed from
[Co] is obtained there through the complicated machinery of étale homotopy theory;
moreover Cox’s construction uses transcendental methods. Therefore it became
desirable to find a different approach. Before proceeding further I want to recall
Cox’s theorem. Based on an idea of M. Artin, it says:

Theorem [Co]. — Let X be a scheme of finite type over R. Let G = Gal(C/R) =
Z]2 act on X(C) by conjugation. Then there is a weak homotopy equivalence

X =~ (X(©)5)
of the pro-finite completions.

Here {X,,} denotes the étale homotopy type of X in the sense of Artin-Mazur
[AM], and X (C); = EG x4 X(C) is the total space of the fibre bundle over BG =
EG/G associated with X(C), where EG is a free contractible G-space.

This can be seen as a real analogue of the comparison theorem of [AM] for the
étale homotopy type of complex algebraic varieties. It implies in particular that
étale cohomology of X with finite constant coefficients M can be calculated as
G -equivariant cohomology on X (C). In this way one derives a long exact sequence
(Co, Prop. 1.2

.- H"(X(C)/G, X(R); M) — H?,(X,M) — HZ(X(R), M) --- (1)

to which I will refer as to the “Cox sequence”. Here HZ% (X (R), M) = H"*(X(R) x
BG, M), and both this group and the first group in (1) are singular cohomology

groups. This sequence shows, in particular, that there are isomorphisms for n > 2d
(with d :=dim X)

d
HI(X, 2/2) = @ H(X(R), Z/2) = H'(X(R), Z/2). (2)

1=0

The present work grew out of an attempt to understand (1) and its conse-
quences in a more elementary way. Besides I wanted to see whether (1) was special
to R-varieties, or rather whether it could be generalized to other situations. It was
clear that in the hoped-for generalization the real spectrum of X would have to re-
place the space X(R). It was less obvious, however, what could play the role of the
quotient space X(C)/G. Also it wasn’t clear initially how to give a purely algebraic
construction of the homomorphisms HZ/(X, M) — H{ (X, M); Cox’s construction
for X/R uses transcendental methods. The idea that (1) or (2) could possibly be
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generalized was supported by a theorem of Arason ([Ar], completed in [AEJ]), which
says: If k is any field, chark # 2, then there is a natural isomorphism

lim H7,(k,Z/2) =5 H°(sperk, Z/2) = H*(sperk, Z/2), (3)
n—oo

where sperk is the space of all orderings of k (the real spectrum of k) and the
transition maps on the left are cup-product with the class of —1 in k*/k*? =
H!,(k,Z/2). So one meets the same phenomenon here as for R-varieties, namely
that in high degrees, étale cohomology stabilizes against cohomology of the real
spectrum.

The key to the desired generalizations, and more generally to a better un-
derstanding of the relationship between étale site and real spectrum, is to see the
situation as an equivariant one. This is best explained by way of analogy with a
space with operators. If T is a topological G-space (G being the group of order
two, say), there is a well-developed theory which relates equivariant cohomology of
G-sheaves on T to cohomology of both the space of fixpoints T and the quotient
space T'/G. For example, the sequence (1) is just an application of this theory to
the G-space X(C).

Let now X be a (general) scheme and consider the G-action on X' := X ®;
Z[/—-1) over X. If X has no points of characteristic 2, it follows by descent that
étale sheaves on X are the same thing as G-equivariant étale sheaves on X'; and
so étale cohomology of X can be identified with G-equivariant étale cohomology
of X'. Now the real spectrum X, of X (or rather, the topos )A(,r of sheaves on
X, ) must be thought of as the “fixobject” (or “fixtopos”) of the G-action on X/,
in a similar way as X(R) = X(C)“ in the case of an algebraic R-variety! Indeed,
there is a natural topos morphism v from Y to X’t; although v is by no ways
an embedding, it plays in a precise sense the role of the inclusion of the fixpoints
in a G-space. By means of v one can pull back any étale sheaf A on X to a G-
sheaf v(G)*A on the real spectrum X, . This purely algebraic construction yields
in particular homomorphisms in cohomology which generalize the right arrows in
(1); and it works for arbitrary schemes and sheaves of coefficients.

To get something which corresponds to the quotient space one has to form
a new Grothendieck topology, namely the intersection of the étale and the real
étale topology of X . The study of this site, which is denoted by X,, occupies a
considerable part of this book. The topos of sheaves on X, contains both X . and
X as full subcategories, in such a way that Xe, is an open subtopos and X is its
closed complement. In this way one arrives at a long exact sequence (Theorem (6.6))
which exists for arbitrary schemes over Z[%] and arbitrary sheaves of coefficients,
and which generalizes the Cox sequence.

The obvious question becomes then, what can one say about the cohomological
properties of X, in particular about its cohomological dimensions? The answer to

this question includes also a comparison of the cohomology of X, and of X.,. Here
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it is shown that if € O(X), the functor v, (on abelian sheaves) is always exact;
and so all cohomological dimensions of X, are bounded above by those of X,. The
main result of this paper (Section 7) says (in a simplified form) that X, has the
same cohomological dimension for 2-primary torsion sheaves as X!, or possible one
higher. (There is a similar result for odd torsion sheaves, but this is easy to prove.)
All one needs is that the scheme X is quasi-compact and quasi-separated, and that
2 is invertible on X . As a corollary one gets that the homomorphisms

H™ (X, A) — HE(X,, v(G)* A) (4)
are isomorphisms for n > cd,(X/,) and any 2-primary sheaf A on X,,. In this
sense, high-dimensional étale cohomology of X is cohomology of the real spectrum
X,. Actually the theorem makes a non-trivial statement also in the case cd,(X/,) =
oo, since for A annihilated by 2 it asserts that (4) is an isomorphism “in the
limit” n — oo. For example this shows that the localization of the cohomology
ring H*(X,,,Z2/2) = H*(X,,, j1,) with respect to the class (—1) € H (X, py) is
isomorphic to the full cohomology ring H*(X,, Z/2) of the real spectrum!

A different line of investigation is taken up in the second part of the paper.
The aim is to reach a better understanding of why the real spectrum X, behaves so
much like a fixobject of the G-action on the étale site of X'. For this one needs the
notion of G-toposes, which are toposes with a (pseudo) G-action. The analogue of
the space of fixpoints for a G-topos is its inverse limit topos (or “fixtopos™). It is
characterized by a 2-categorical universal property. In Section 10 this inverse limit
of a G-topos is explicitly constructed (G may be any finite group here), and in
particular, its existence is shown. Then it is proved for an arbitrary scheme X with
1 € O(X) that the real topos X’r is the inverse limit of the G-topos Xét.

It becomes therefore interesting to take other examples of G-toposes, try to
determine their inverse limit toposes and see whether one can prove similar theorems
about cohomology. Apart from the basic example of a topological G-space there is

one major example studied here, namely group extensions: Any such extension
l1— A —>T —G—1 (5)

makes the category (A-sets) into a G-topos. In the case where G is finite and the
groups are discrete or profinite, the inverse limit of this G-topos is determined in
Section 11.2.

The motivation for the study of this case, and for its inclusion into this paper,
is as follows. The proof of the main theorem was reduced in Section 7 to the
case of fields; and in Section 9 it was shown that for fields this main result can
be deduced from Arason’s theorem (3) mentioned above. Now the proof of the
latter uses very specific (cohomological) properties of absolute Galois groups of
fields. On the other hand, Arason’s theorem fits exactly a general pattern which
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is given by theorems of K.S. Brown for discrete groups: If T' is any discrete group
of finite virtual cohomological dimension d, Brown has shown that cohomology of
T" in degrees n > d is I'-equivariant cohomology of a certain simplicial complex
formed by finite subgroups of I'. It is quite straightforward how a conjectural
analogue of Brown’s theorem for profinite groups should look like. In the case of
the absolute Galois group of a field, this conjectural theorem would become just
the main theorem of Section 9! This makes one wonder, of course, whether there is
indeed such a profinite analogue of Brown’s result. In fact, such a theorem exists.
In Section 12, it is proved only under a special hypothesis, namely in the “rank one”
case. Nevertheless, this includes absolute Galois groups of fields. In this way an
independent and completely different approach to Arason’s theorem is given, which
does not use any of the special properties of Galois groups. The general profinite
version of Brown’s theorem will be proved in a forthcoming paper [Sch2].

Now the interesting point is this. Let the group G in (5) be cyclic of prime
order p, and let d := cd,(A) be finite. The groups with which the cohomology
groups H™(T") for n > d are identified (by Brown’s theorem in the discrete case,
by Section 12 in the profinite case) are nothing but the G-equivariant cohomology
groups of the fixtopos of the G-topos (A-sets). This follows from the identification
of this fixtopos in 11.2. So from the perspective of G-toposes, the main results of
Section 7 (for general schemes) and Brown’s (discrete or profinite) theorem (in the
case just considered) have identical formulations!

It is shown in Section 13 that also the (easier) case of a topological G -space
fits the same pattern.

I now give a systematic overview of the contents of this paper. For some more
specific information see also the introductory remarks to the respective sections.

In Section 1 it is proved that sheaves on the real spectrum X, of a scheme are,
up to equivalence, the same as sheaves on the real étale site X, ,. Although this
theorem is well known, at least for affine schemes (proved by Coste-Roy and Coste),
the proof given here is new and — as I think — more elementary than the proofs
existing before. It uses neither methods from mathematical logic nor the concept of
strict real localization. The result is basic for much of what follows, since it allows
to switch freely between two quite different descriptions of the real topos of X | each
of which has its specific advantages.

In Section 2 the b-topology of a scheme is defined as the intersection of the
étale and the real étale topologies. It is shown that j(:,, (the category of sheaves on
X, ) is the result of glueing X,, and X
obtained. Also the next section presents basic material: Limit theorems for sheaf

rets and some consequences of this fact are
cohomology, the description of the stalk functors, stalks of (higher) direct images
and the like. Here as well as in later sections it happens frequently (but not always)
that results for the b-topology are obtained by combining results for the étale and
the real (étale) topologies. In most of the cases, the étale part is the harder one, of
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course.
=, .
to X, in

Section 5. Geometrically v corresponds to the Weil restriction functor with respect

The next topic is the study of the topos morphism v from X,e,
to X' — X. The main result is that v, is exact on abelian sheaves, provided
that 2 is invertible on X . For this one has to study the real spectrum of the Weil
restriction of a strictly henselian local ring, and to show that its sheaf cohomology
vanishes. I could not decide whether this remains true when characteristic 2 points
are present.

For lack of suitable references I have inserted before this a section in which all
facts about Weil restrictions are proved which are used later on (Section 4).

In Section 6 the fundamental long exact sequence is established which relates
cohomology of X,,, X, and X, and which generalizes the Cox sequence (1). In
Section 7 the proof of the main result on cohomology of X, is taken up. Assuming
that the theorem is true for fields, it is first extended to schemes of finite type over
specZ, and then by limit and glueing arguments to general quasi-compact, quasi-
separated schemes. The case of fields is treated in Section 9. For this one needs a
third description of the real topos of a field k. The absolute Galois group I' of k
acts on the space T of all real closures of k (inside a fixed algebraic closure). If T
denotes the subgroup of T' which fixes v/—1 then sheaves on the real spectrum of
k can be identified with I'-equivariant sheaves on T'. Here a “continuous” notion
of equivariant sheaves is required which takes care of the fact that I' carries a
topology. Since I do not know any reference for this concept, I have again inserted
a preparatory section (Section 8) in which some necessary foundations are laid. As
already remarked, the proof of the main theorem is finally reduced to Arason’s
theorem (3). The proof of the latter is discussed at the end of Section 9, and the
question is raised whether the specific cohomological properties of Galois groups
which it uses are necessary for the theorem to hold.

In Section 12 it is shown that this is not the case. The approach there is
completely different from Arason’s. One considers a profinite group I' which has an
open subgroup A with cd,(A) < co (p may be any prime). Let T be the (boolean)
space of all subgroups of order p in I'. Under the assumption that I' contains no

subgroup isomorphic to Z/p x Z/p, it is proved that the natural homomorphisms
H™(T,A) — H}(%,A)

are isomorphisms for n > d and for any p-primary I'-module A. As already
remarked, this theorem has a counterpart for discrete groups, which is due to
K.S. Brown and whose proof is based on Farrell cohomology. If one tries to im-
itate Brown’s proof one runs into difficulties in the profinite case. The proof given
here proceeds differently, but is limited to the case where I' contains no Z/p x Z/p
(but see [Sch2] for a proof covering the general case, based on the same ideas). In

any case it is essential that one uses projective resolutions of modules, instead of
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injective ones. This cannot be done with discrete I'-modules alone (there aren’t
enough projectives in the profinite case), rather one has to consider also profinite
I'-modules. The necessary backgroung material is summarized at the beginning of
Section 12.

Before Section 12, however, there are two sections on G-toposes. In Section 10
I give a detailed review of the basic concepts, and then construct the fixtopos of
an arbitrary G-topos E in the case where the group G is finite. If F' denotes this
fixtopos and v: F — E is the corresponding topos morphism, then all composite
topos morphisms g o v: F — E (g € G) are “coherently” isomorphic (but not in
general equal); and v is universal for this property. This fixtopos is determined in
Section 11 in the two cases which are 1mportant for this paper. Namely, if X is a
scheme on which 2 is invertible, the fixtopos of X': is identified as the real topos X
Thus a precise meaning is given here to the feeling that the real spectrum behaves
like sort of a fixobject of the G-action on X!,. Second, if (5) is an extension of
discrete or profinite groups, and if G is finite, the fixtopos of the G-topos (A-sets)
is shown to be the category of A-equivariant sheaves on the space of splittings of
(5). Note how these two examples agree on their common “intersection”, namely
the spectrum (resp. Galois group) of a field.

The material on G-toposes may appear quite technical and “dry”. But there
seems no doubt that this perspective is essential if one wants to grasp the right
ity Xo, X, and X;. Moreover, if

one assumes this point of view, one is rewarded in several ways: By analogy with

idea about the relations between the sites X'

topological G -spaces the main results of the first part become very natural, if not to
be expected. Besides I found it quite satisfactory to see a common principle at work
in so different situations. To describe the basic idea, consider a group G of prime
order p which acts on a (nice) topological space T. If Z = T is the set of fixpoints
then the restriction maps HE(T, A) — HY (Z,A|;) in equivariant cohomology
are bijective for n > dimT. Alternatively one can read this as a statement on
the cohomological dimension of 7'/G, by a long exact sequence similar to Cox’s
sequence. Now replace T' by a G-topos E and Z by its fixtopos F. The idea is
that there should be a good chance for an analogous theorem to hold. Indeed, the
results of this paper give three different examples for such a situation: In the case
of the G-topos X!, (X a scheme over Z[3]) the above principle corresponds to the
main theorem of Section 7. In the case of a group extension (5), with |G| = p and
cd,(A) < oo, it corresponds to particular cases of Brown’s theorem (for discrete
groups) resp. of the main result of Section 12 (for profinite groups). Finally, if E is
the topos of sheaves on a G-space T then F is the category of sheaves on Z = T¢
as shown in Section 13. For a summarizing discussion I refer to the end of Section 14.

Also the notion of quotient is considered for G'-toposes. In general there does
not seem to be an obvious topos-theoretic construction which corresponds to the

quotient space T/G of a topological G-space T. In Section 14 I propose for G-
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toposes E, in the case where G is of prime order, to form a glued topos by mimicking
the construction of )~(,,, and to regard this as a substitute for the topological quo-
tient. That this yields the right thing in the situation of a topological G-space is
proved in Section 13.

In the third part of this book I return to the study of the three topologies et,
b, ret on a scheme X . Section 15 contains comparison results. For example it is
shown that, for a (separated) scheme X of finite type over R, the cohomology of X
with torsion coefficients is the cohomology of the quotient space X(C)/G. A similar
result holds over arbitrary real closed fields. This shows once more that X, has to
be considered as the “topological” (or “non-free”) quotient of X!, mod G. Also
a very easy deduction of the Cox exact sequence (1) is given which does not need
étale homotopy theory. However it uses the Comparison Theorem between classical
and étale cohomology of complex varieties, which of course is also a non-trivial tool.

In Section 16 the proper and smooth base change theorems are proved for the
real étale topology, and from this one gets corresponding theorems also for the b-
topology (using the étale theorems, of course). Proper base change for real spectra
has been proved before by H. Delfs; here a new proof is given. The smooth base
change theorem seems to be new in the real setup. The reason why it hasn’t been
considered so far may be that smoothness doesn’t make sense in the context of
semi-algebraic spaces and maps (the structure sheaves are simply too large), nor in
the more general framework of real closed spaces. I explain however how to weaken
the smoothness hypothesis in such a way that one can prove a corresponding base
change theorem for real closed spaces.

Section 17 contains finiteness theorems for the real and the b-topology, and for
finitely presented proper morphisms. So these theorems are saying that the higher
direct image functors of such morphisms preserve constructible abelian sheaves (and
similarly for set-valued sheaves). As a corollary one gets a theorem on the smooth
specialization of the cohomology of proper schemes. By making use of the étale
finiteness theorem one can again reduce the study of the b-topology to the real
topology. In the latter case the proof reduces to a semi-algebraic situation in which
the finiteness theorem is proved without any properness hypothesis. The main
technical tool is semi-algebraic triangulation.

The aim of Section 18 is to show, for a d-dimensional affine variety over a real
closed field, that b-cohomology vanishes in degrees > d. Unfortunately it seems
that there is no way of getting this result as a corollary to the étale case (which
is well known) plus the real case (which is obvious). Rather one has to mimic the
proof of the corresponding étale theorem. In particular this means to consider more
generally a relative affine situation between varieties over a field.

Section 19 relates the three topologies on a scheme X to the Zariski topology.
In particular it is proved that the direct image functor of the support map X, — X

is exact on abelian sheaves. This simple fact is quite useful, as is demonstrated by
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various applications. Among them are very far reaching generalizations of results of
Colliot-Théléne and Parimala from [CTP].

The last section (Section 20) is devoted to some explicit computations and ap-
plications. First, smooth curves over a real closed field are considered and their étale
and b-cohomology (with coefficients u®') is determined. Also, classical theorems
on real curves by Weichold, Witt and Geyer are reproved by means of results of
this work. Then it is studied (on general schemes) what one gets from the results
of Part One for some specific étale sheaves. Most interesting is here the case of the

multiplicative sheaf G, ; its n-th étale cohomology group, for n > 0, is the part

m)
of H*(X,, Z/2) of the same parity as n. This subsection contains also a variety
of side remarks and other complements. Then fields are considered again: Some
remarks are made on the b-cohomology of a field, and on the fundamental group of
the b-topology. At the end of Section 20 a few historical remarks are made on the

relations of this work to work of other authors.

There are two appendices. The first assembles results on spectral spaces which
are used in several places throughout the paper and which I could not find in the
literature. The second is an application of results of this paper to Artin-Schreier
structures. The notion of an Artin-Schreier structure was invented by D. Haran and
M. Jarden in the course of their study of absolute Galois groups of PRC fields, where
it plays a key role [HJ]. For example, every field k gives rise to an Artin-Schreier
structure 2(k), which consists essentially of the absolute Galois group Gal(k,/k)
together with its distinguished subgroup Gal(k,/k(v/—1)) and its action on the
space of real closures of k. In [Ha3] Haran proposes a cohomology theory for these
structures. Among its features is that it yields reasonable (finite) cohomological 2-
dimensions for real fields, and that it allows a cohomological characterization of real
projective groups. (The class of these groups comprises exactly the class of absolute
Galois groups of PRC fields [HJ].) For non-real fields this cohomology coincides
with Galois cohomology. Haran’s cohomology is defined by ad hoc methods, and the
definition is somewhat mysterious, as the author remarks by himself. In Appendix B
a natural explanation of this cohomology theory is given in terms of the b-topology.
For example, in the case of the Artin-Schreier structure (k) of a field, Haran’s
cohomology coincides with sheaf cohomology on the site (speck),; and a similar
characterization is true in general. By the results of Section 9 (in the field case)
or Section 12 (in general) it is an easy corollary to determine the cohomological
dimensions of arbitrary Artin-Schreier structures. A particular corollary is that a
field k is real projective if and only if k(1/—1) is projective. These latter results

were proved independently by Haran, who used different methods [Ha4].

After this introduction the reader can find a summary of the general notations,
definitions and conventions valid in this paper. This part is referred to by labels of
the form (0.zz). Otherwise the first entry of a label indicates the number of the

section in which it can be found.
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I should add the remark that, although this paper is devoted to cohomological
studies, non-abelian cohomology has not been considered anywhere in it. This
mainly in order to save space and time.

This book is a slightly revised version of my Habilitationsschrift with the same
title, which was submitted to the Mathematische Fakultat of Universitat Regensburg
in November 1992. The idea to think about relations between étale cohomology and
the real spectrum owes a lot to Louis Mahé, whom I want to thank warmly for
stimulating questions and discussions through which he whetted my appetite. He
always stressed the similarity between étale cohomology classes and quadratic forms.
Although later this work turned into somewhat different directions, it was Louis who
had shown me in his friendly way that here is something to think about. I am also
grateful to Dan Haran for sending me his papers and preprints; in particular I
profited from his exposition of profinite group modules in [Ha2].

Moreover, I am indebted to several people who critically read the whole manuscript
or parts of it, for their constructive criticism. Above all, Jean-Louis Colliot-Théléne
contributed a great number of detailed suggestions and comments which were in-
corporated into this revision and improved the presentation. I also received valu-
able advice from Claudio Casanova, Michel Coste, Manfred Knebusch, Louis Mahé,
Manuel Ojanguren and Jean-Pierre Serre. It is a pleasure to thank all of them here.

Finally I would like to express my special gratitude to Manfred Knebusch, who

has actively supported and encouraged me for many years now.



Leitfaden

The following diagram indicates the main relations between the sections of the book.
An arrow from X to Y signalizes that results or techniques of Section X are used
in Section Y. A dotted such arrow indicates a weaker sort of dependency.

The reader should start with Sections 1-3, and then proceed with Sections 5,
6, 7 and 9 in order, using Sections 4 resp. 8 as technical references for Sections 5
resp. 9. The lecture of most of Section 5 may be skipped at a first reading, if one is
willing to accept in Section 7 that Theorem (5.9) is true.

After the study of Part One, the reader may proceed with either Part Two or
Part Three (if he or she hasn’t lost any interest at all), or may even pass directly to
Sections 19 and 20, where applications of Part One can be found. Generally, Part
Two emphasizes topos theoretic techniques; but Section 12 doesn’t use such tech-
niques, and can practically be read independently of the rest of the book, perhaps
with a glance into Section 8 at some points. (See the Introduction for why this
section is placed here.) Sections 15-18 are devoted to fundamental theorems for the
real and the b-topology, and do neither depend seriously on Part Two nor on the

main results from Section 7.
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General notations and conventions

The following serves the purpose of fixing notations and conventions which are used
throughout the paper. It also gives the precise sense in which some general concepts
are used later on, either by explicitly recalling definitions or by giving references to

the literature.

(0.1) Categories and functors

In general I have tried to maintain definitions and notations from [SGA4 I]. Through-
out all set-theoretic questions are ignored. In particular, no attempt has been made

to keep track of a hierarchy of universes, as is done in [SGA4].

(0.1.1) Let C be a category. Examples are

(sets) = the category of sets,
(Ab) = the category of abelian groups,
(Top) = the category of topological spaces,

the morphisms being the obvious ones. I often write “z € C'” to indicate that z is
an object of C'. The set of C'-arrows from = to y is denoted Hom (z,y), or simply
Hom(z,y) if C is clear from the context; or occasionally by y(z). If z € C then
C/z is the category of C-objects over z, i.e. the objects of C/x are the C-arrows

with target z.

(0.1.2) C* is the opposite category of C' (same objects but arrows reversed). If
D is a second category then Hom(C, D) is the category of functors C' — D (with
morphisms of functors as arrows). Note that all functors are “covariant”; thus a
“contravariant” functor from C to D is either a functor C° — D or a functor

C' — D°. Let a diagram of categories and functors

£e .

g 20 — p L, p

be given. If ¢: f — f' is a morphism of functors then ¢ * ¢ denotes the morphism
of functors fog — f'og induced by ¢; and h*¢ is defined similarly. This notation

is not used consequently, however.

(0.1.3) One puts

C = Hom(C°, (sets)) and C7 := Hom(C, (sets));



