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Preface .

In a heuristic approach the concept of hot electrons is associated with a
temperature of the electron gas which is higher than that of the host lattice. This
is usually realized by applying electric fields of sufficiently high strength, and the
study of charge-carrier dynamics under such a condition is commonly called hot-
electron transport.

Owing to the growing importance which semiconductor devices are assuming
in the technology of computers and telecommunications, hot-electron transport
in semiconductors is rapidly developing as a research subject. Indeed, modern
microelectronize has now entered the submicrometer scale of miniaturization,
and it is easy to understand that even a few volts in the applied voltage can lead to
very high electric fields of the order of 10,000 V/cm. These high fields, by leading
to values of the carrier drift velocity of the order of 107 cm/s, are also at the basis
of devices operating at frequencies as high as 100 GHz.

Physical understanding of most of the microscopic processes which underlie
the performances of semiconductor devices at high electric fields is provided by
research into hot-electron phenomena. A first survey, describing theoretical and
experimental findings up to 1965, is given in Conwell’s well-known book High
Field Transport in Semiconductors, issued as supplement in the Solid State
Physics Series (Academic, New York 1967). Since then, a notable amount of
work has been done. New expcrimental techniques have been used and different
materials have been characterized. Also new theoretical methods have been
introduced, enabling exact numerical solutions of the Boltzmann equation.

The purpose of this volume is to give a unifying physical interpretation of the
main results which have appeared in the literature of the past 20 years on hot-
electron transport in bulk semiconductors. This aim is pursued by a combination
of tutorial and educational background material, and up-to-date applications to
problem areas of current interest.

Many authors with international recognition have contributed to make this
book highly beneficial for the reader. i

Together with the description of different theoretical and experimental
techniques, a great effort has been devoted“to the collection and display of
the most reliable data, not otherwise available in a single textbook, on the drift
velocity, the diffusion coefficient and the equivalent noise temperature as-
sociated with velocity fluctuations of the best known semiconductors. Further-
more, the microscopic models pertaining to different materials have been widely
discussed and summarized in useful tables. The content of the book should
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therefore satisfy the basic requirement of offering an up-to-date microscopic
description of hot-electron phenomena, and could be destined to become a
helpful standard of reference. It may be of particular interest to researchers and
graduate students in the field of microelectronics, VLSI, and device modeling, in
particular. It may thus be recommended as a textbook for graduate courses in
physics of electronics, and electrical engineering departments.

Finally, the editor would like to express his thanks to Professor M. Cardona
for having solicited this effort, to Dr. H. Lotsch for his cooperation in the editing
procedure, to the authors who have contributed to this volume and to the
colleagues in the Physics Department for having provided a critical scientific
environment of high standard. Also acknowledged are the Computer Center of
the Modena University, the Ministero della Pubblica Istruzione (MPI) and the
European Research Office (ERO) for their financial support.

Modena, October 1984 Lino Reggiani
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1. Introduction

Lino Reggiani

1.1 Historical Survey and Scientific Motivations

For about 40 years now hot electron transport has been a fruitful sul':tject in the

field of solid-state physics both for theory and experiments. This is easily

‘understandable in view of the determinant role that semiconductor devices are
continuously playing in the developing fields of computers and telecommuni-
cations, Modern microelectronics has by now entered the submicrometer scale of
miniaturization, and it can easily be seen that even a few volts i the applied
voltage can lead to very high electric fields of the order of 10,000 V/cm. These
high fields, by leading to values of the carrier drift velocity v, of the order of
107 cm/s, are also at the basis of devices operating at frequencies as high as
100GHz.

One should emphasize that this subject has taken advantage of most of the
knowledge in the parallel field of transport in an ionized gas [1.1,2], in many
cases offering valuable testing of theoretical models. Indezd, the electron gas can
be confined within very small volumes (typically a few cubic milliméters) of the
host crystal, which in turn can be shaped appropriately, by making use of the
sophisticated technology borrowed from electrical engineering.

This has-enabled scientists to devise and develop a wide series of experiments
which hitherto seems to be limited only by the ingenious imagination of
researchers.

From an historical point of view, the beginning of systematic analysis in hot-
electron problems could be dated to the end of the 40’s. At that time the scientific
motivation was related to the study of dielectric breakdown in insulators, from
which the concept of hot electron was originally introduced [1.3,4]. Sub-
sequently, taking impetus from the discovery of the transistor, the study of the
nonlinear behaviour of current-voltage characteristics (deviation from Ohm’s
law) [1.5] and of instability phenomena (the Gunn effect) [1.6] was carried out on

a few semiconductors, Ge and GaAs in particular. Even if these pioneering

measurements were somewhat incomplete (for instance, diffusion data were not
available and the range of electric field strengths and temperatures was too

limited) and the theoretical interpretation suffered from too rough analytical

approximations, the agreement between theory and experiments appeared to be

reasonably satisfactory. The possibility of superimposing on a static electric field .-

other fields such as magnetic, strain, etc. enlarged the subject, which received a
first general survey up to about 1965 in Conwell’s book [1.7].

~In the following years, 196580, the availability of fast computers enabled
numerical methods for an exact solution of the Boltzmann equation, which were
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soon developed to a high degree of refinement, “in primis” the Monte Carlo
method [1.8,9] and the iterative procedure [1.10]. These, in turn, led to a more
rigorous interpretation of experiments [1.11]. In the same period new experi-
mental techniques were introduced, and the materials which were more
interesting and promising for application purposes (e.g., Si, Ge, GaAs and
related III-V and II-VI compounds) were systematically characterized. In
particular, new techniques were developed which, for the first time, enables
reliable measurements of the diffusion coefficient to be performed.

Thus, these years witness, on the one hand, systematic analysis of results
associated with bulk properties and, on the other, the opening up of a new area of
research centered upon super-lattice (multi-layered) structures [1.12,13]. With
respect to hot electron transport in bulk materials, we can retrospectively
identify three ‘“‘grouping arguments” which have catalyzed the researchers’
efforts. .

The first one is the generalization to arbitrary field strength of the basic
kinetic coefficients: mobility p, diffusion coefficient D, and spectral density of
velocity fluctuations, S, At equilibrium these coefficients are related to each
other by the fluctuation-dissipation theorem [1.14]. In its macroscopic formula-
tion this theorem can be expressed by the Einstein relation (fluctuation-
dissipation theorem of first kind) and by the Nyquist relation (fluctuation-
dissipation theorem of second kind) [1.15]. For carrier concentrations far from
degeneracy and neglecting the quantum correction factor (i.e., iw < Kz T, will be
assumed), these are, respectively, given by

-

1

(bo)* _4 KsTo Re {p*(w)). 1.2)
ow e

S,(w)=2n

Here e is the electron charge, K the Boltzmann constant, 7, the absolute
temperature of the thermal bath, v a component of the carrier velocity, w the
angular frequency; the bar signifies a time average, and the frequency dependent
differential mobility u*(w) (in this case field independent) is expressed as a
complex number in accordance with the usual notation. (It has to be noted that,
owing to the assumed linearity with respect to external fields, the zero frequency
chord mobility u=v4/E and Re {u*(w)} = dv,/dE coincide for wt <1, 1 being of
the order of the momentum relaxation time). Thus, for thermal equilibrium, an
independent determination of the noise spectral density or of the diffusion
coefficient does not add information not otherwise available from the mobility.
' A generalization to a high electric field of the Einstein relation was proved
under the two auxiliary conditions [1.14]: (i) the system. seen as a two-terminal
device. is electrically stable, that is Re { u*(E, w)} >0, (in this case p* is field
dependent); (ii) two-particle interaction is neglected.
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Under these conditions .... Price relationship [1.16] can be written as
D(E,w)=%Re {u*(E,w)} KpT,(E, w). )

Here the noise temperature T, is a convenient way to express the spectral density
of velocity fluctuations when the system is displaced from equilibrium due to the
application of an external electric field. Its macroscopic meaning is related to the
measurable quantity KzT,4f, Af being the frequency bandwidth, which is the
maximum noise power at frequency f, which can be displayed by the network in
an output circuit [1.17]. T, represents a property of the ensemble of charge
carriers which is, in general, different from both its “energy temperature” T,
(conveniently defined as T.={(&)2/(3Kg), (&) being the carrier average-
energy) and from the thermal bath temperature T;,. The hot-electron condition is
therefore responsible for the introduction of kinetic coefficients which depend
upon the electric field strength and are related to each other through (1.3).

The latter represents a generalization of the fluctuation-dissipation theorem
under conditions far from equilibrium [1.18,19]. The determination of these
coefficients for different materials in a wide range of field strengths (up to
200,000 V/cm) and temperatures (from 6 up to 430 K) has been carried out
successfully in these last years.

Furthermore, the satisfactory agreement with the macroscopic interpreta-
tion [1.20] has enabled improved knowledge of the different scattering
mechanisms which charge carriers undergo in their motion in the crystal.

A second grouping argument is the analysis of instabilities related to the
condition of negative differential mobility. Under this condition it 1s well known
that a random fluctuation of carrier density produces a space charge that grows
exponentially in time [1.21]. As aresult direct conversion of energy fromadctoa
microwave frequency (ac) is made possible. This self-organized phenomenon can
give rise to interesting examples of broken symmetry [1.22,23] when the band
structure of the material is of many-valley type.

A third grouping argument is concerned with the analysis of transport
properties in the streaming-motion limit. This physical condition, which
corresponds to a carrier distribution function needle-shaped along the field
direction, is made possible when the dominant scattering process is through
optical-phonon emission. Thus the ensemble of carriers is characterized by the
time a carrier takes to reach the optical phonon energy starting from rest, and the
net effect of the external applied field is to order the carrier motion which, at
equlibrium, is randomly spread. Under such a condition a lot of peculiar
transport phenomena become possible, for instance, the practical vanishing of
diffusion processes and the saturation of the drift velocity of charge carriers
[1.24]. '

With regard to hot-electron phenomena in superlattices and related
submicrometer structures, this argument represents a new area, of considerable
practical interest, and presently in rapid development. As such, we are not 1n a
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position to set out this argument systematically, as in the case of bulk pheno-
mena. Aside from this, two grouping arguments are attracting researcher’s
. attention and these we shall propose for the attention of the reader. They are
usually referred to as real-space transfer [1.25] and ballistic transport [1.26].

Real-space transfer can be obtained in semiconductors heterostructures
which are modulation-doped ; the Al, Ga, -, As-GaAs heterostructure can be
taken as prototype.

If the Al, Ga, —, As component is doped, then electrons move towards the
GaAs which is the material with the lower band gap, provided that the band edge
discontinuity between the materials is sufficiently large. The electrons are then
separated from their parent donors and experience a much reduced impurity
scattering. Under hot-electron conditions, when a high field is applied parallel to -
the heterolayer, the electrons are accelerated until they attain enough energy to
propagate perpendicular to the layers and reunite with their parent donors.
Therefore, the electrons experience strong impurity scattering and negative
differential resistance can occur. This is the real-space analogy (real-space
trangfer) to the Gunn effect. .

Ballistic transport can occnr in submxcrometer structures, a simple prototype
being of the type n*—n-n", with the active region n of submicrometer length.
When the active-region length becomes comparable to or less than the carrier
mean free path, transport may occur without collision (ballistic motion) in a
perfect analogy with the case of vacuum diodes.

This phenomenon, which seems to have the inherent poss:blhty of i nnprovmg
device performances in terms of low power dissipation and high speed logic, is
becoming highly attractive from an applied point of view.

1.2 Outline of the Book

The book is ideally divided into three parts which are intended to develop the
“grouping arguments” briefly reviewed above.

Part 1 (Chap. 2) presents the general theory underlying hot-electron trans-
port and serves as the foundation of the subsequent chapters of the book. The
‘first principles of such a theory rely on the Boltzmann equation, the band
structure and the scattering mechanisms. The fundamental quantities, drift
velocity, diffusion coefficient and white noise temperature associated with
velocity fluctuations are rigorously defined. Then, their dependence upon
electric field strength and temperature is-investigated for simple but valuable
models and for some real cases of interest.

Part 2 (Chaps. 3-6) reviews the most interesting results which have been
obtained to date for bulk properties and whose microscopic interpretation seems
to be well established. More emphasis has been given to the quantities measured
and their physical mterpretatlon than to the materials under investigation,
through contributions in which the experiments and theory are appropriately
balanced.
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. Accordingly, Chap. 3 describes the time-of-flight technique, an experimental
‘set-up which has provided quite reliable measurements of both drift velocity and
diffusion coéfficient. Furthermore, several results obtained on different mate-
rials are reported together with the available theoretical interpretation. Chap-
ter 4 analyzes hot carrier transport and fluctuation phenomena as obtained
through microwave carrier heating. Together with the determination of
microwave conductivity and related relaxation effects, nonhomogeneous carrier -
heating is also investigated. In particular, this technique is shown to be
complementary with the time-of-flight technique for the determination of the
diffusion coefficient, thus providing an experimental proof of the Emstem and
Price relatlonshlps see (1.1, 3).

Chapter 5 is devoted to the study of the instabilities related to negative
differential conductivity in the case of covalent many-valley semiconductors.
The conditions for the existence of a multivalued electron distribution are
discussed in the light of theoretical models which well agree with experiments.
Chapter 6 deals with the properties of hot-electron transport under streaming
motion conditions.

Starting from the simplest situation, when only an applied electric field is
present, the inclusion of a transverse magnetic field is then considered. In this
way a situation of population inversion occurring in the continuum of the energy
band is shown to be possible. Furthermore, the case of intense microwave electric
field coupled with a magnetic field is shown to predict a carrier bunching in
momentum space.

Part 3 (Chaps. 7 and 8) deals with phenomena related to superlattices and
submicrometer structures and gives some insight into their potential applica-
bility to devices. Accordingly, Chap. 7 presents the general features of band
structure and scattering mechanisms in multilayer structures, then treats of real
space transfer. Furthermore, the possible microelectronic applications of
multidimensional superlattices and heterostructures are discussed. Chapter 8 -
analyzes carrier transport under non-steady state conditions as it occurs in the
presence of a very short time or very small space configuration of the electric
field. New features are then found which characterize the carrier dynamics, and
some interesting phenomena, such as ballistic motion, overshoot and under-
shoot of drift velocity, and negative diffusivity, are predicted. All these new
aspects, which still await full experimental evidence, are expected to introduce a
significant improvement in the performances of future devices.
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