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INTRODUCTION

The functions studied in this monograph are a cross between
elliptic functions and modular forms in one variable. Specifically,
we define a Jacobi form on SL,(Z) to be a holomorphic function

¢: HxaC > ¢ (¥ = upper half-plane)
satisfying the two transformation ecuations

2mimcz

W (S ) - ek T s (23 e n).

e—ZWim()\ZT +2Xz)

2) ¢ (T, z+AT+N) ¢ (1,2) (hw € z%)
and having a Fourier expansion of the form
3) o(t,z) = Z Z ElnsE o2mi(nT +rz)
n=0 r€Z
2 < 4nm

Here k and m are natural numbers, called the weight and index of ¢,
respectively. Note that the function ¢(t,0) is an ordinary modular
form of weight k, while for fixed T the function z > ¢(1,z) is a
function of the type normally used to embed the elliptic curve C/ZT + Z
into a projective space.

If m=0, then ¢ is independent of 2z and the definition reduces
to the usual notion of modular forms in one variable. We give three
other examples of situations where functions satisfying (1)-(3) arise
classically:

1. Theta series. Let Q: i\l > Z be a positive definite integer
valued quadratic form and B the associated bilinear form. Then for

N "
any vector x €Z  the theta series

“) 0 (t.,2) = E e21Ti(Q(x)T +B(x,x,)2)
X xezN
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is a Jacobi form (in general on a congruence subgroup of SL,(Z)) of
weight N/2 and index Q(xo); the condition r2§ 4nm in (3) arises from
the fact that the restriction of Q to Zx + Zx, is a positive definite
binary quadratic form. Such theta series (for N=1) were first studied
by Jacobi [10], whence our general name for functions satisfying (1)

and (2).

2. TFourier coefficients of Siegel modular forms. Let F(Z) be a

Siegel modular form of weight k and degree 2. Then we can write Z as
T
(z _Z[,) with ze€, T,7'€ ¥ (and Im(z)? < Im(T)Im(T')), and the

function F is periodic in each variable T, z and T'. Write its

Fourier expansion with respect to 7' as

[ee]
2mimT"'
) F(z) = 2 ¢ (t,2)e”
m=0
then for each m the function ¢m is a Jacobi form of weight k and
index m, the condition 4nm grz in (3) now coming from the fact that F

2mi Tr(TZ) where T

has a Fourier development of the form X c(T) e
ranges over positive semi-definite symmetric 2x2 matrices. The expan-
sion (5) (and generalizations to other groups) was first studied by
Piatetski-Shapiro [26], who referred to it as the Fourier-Jacobi
expansion of F and to the coefficients ¢)m as Jacobi functions, a word
which we will reserve for (meromorphic) quotients of Jacobi forms of

the same weight and index, in accordance with the usual terminology

for modular forms and functions.

3. The Weierstrass p-function. The function
= -2 =2
(6) a2 = 204 D, (GHw T-wTh)
wEZ+ZT
w#0

is a meromorphic Jacobi form of weight 2 and index 0; we will see
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later how to express it as a quotient of holomorphic Jacobi forms (of
index 1 and weights 12 and 10).

Despite the importance of these examples, however, no systematic
theory of Jacobi forms along the lines of Hecke's theory of modular
forms seems to have been attempted previously.* The authors' interest
in constructing such a theory arose from their attempts to understand
and extend Maass' beautiful work on the "Saito-Kurokawa conjecture".
This conjecture, formulated independently by Saito and by Kurokawa [15]
on the basis of numerical calculations of eigenvalues of Hecke operators
for the (full) Siegel modular group, asserted the existence of a "1ift-
ing" from ordinary modular forms of weight 2k-2 (and level one) to
Siegel modular forms of weight k (and also level one); in a more
precise version, it said that this lifting should land in a specific
subspace of the space of Siegel modular forms (the so-called Maass
"Spezialschar", defined by certain identities among Fourier coefficients)
and should in fact be an isomorphism from MZk—Z(SLZ(Z)) onto this space,
mapping Eisenstein series to Eisenstein series, cusp forms to cusp forms,
and Hecke eigenforms to Hecke eigenforms. Most of this conjecture was
proved by Maass [21,22,23], another part by Andrianov [2], and the

remaining part by one of the authors [40]. It turns out that the

* Shimura [31,32] has studied the same functions and also their higher-
dimensional generalizations. By multiplication by appropriate elemen-
tary factors they become modular functions in T and elliptic (resp.
Abelian) functions in 2z, although non-analytic ones. Shimura used
them for a new foundation of complex multiplication of Abelian functions.
Because of the different aims Shimura's work does not overlap with ours.
We also mention the work of R.Berndt [3,4], who studied the quotient
field (field of Jacobi functions) from both an algebraic-geometrical
and arithmetical point of view. Here, too, the overlap is slight
since the field of Jacobi functions for SL,(Z) is easily determined
(it is generated over € by the modular invariant j(T) and the
Weierstrass p-function p(T,z)); Berndt's papers concern Jacobi func-
tions of higher level. Finally, the very recent paper of Feingold and
Frenkel [Math. Ann. 263, 1983] on Kac-Moody algebras uses functions
equivalent to our Jacobi forms, though with a very different motivation;
here there is some overlap of their results and our §9 (in particular,
our Theorem 9.3 seems to be equivalent to their Corollary 7.11).



conjectured correspondence is the composition of three isomorphisms

" : n C
Maass ''Spezialschar Mk(Spq(Z))

0
!
Jacobi forms of weight k and index 1
@)) |2
v
Kohnen's " +'"-space ([11]) C Mk (T (4
L\
¢

My, (SL,(Z)) ;

the first map associates to each F the function ¢1 defined by (5), the

second is given by

> cm) g2Tint 2: 2: c(4n -1?) eZWi(nT-+rz) ,

nz0 n20 r’<4n

and the third is the Shimura correspondence [29,30] between modular
forms of integral and half-integral weight, as sharpened by Kohnen [11]
for the case of forms of level 1.

One of the main purposes of this work will be to explain diagram
(7) in more detail and to discuss the extent to which it generalizes to
Jacobi forms of higher index. This will be carried out in Chapters T
and II, in which other basic elements of the theory (Eisenstein series,
Hecke operators, ...) are also developed. In Chapter IIT we will study
the bigraded ring of all Jacobi forms on SL,(Z). This is much more
complicated than the usual situation because, in contrast with the
classical isomorphism M*(SLZ(Z)) = C[E“,Ee], the ring J*,* = @ Jk,m

k,m

&) = Jacobi forms of weight k and index m) is not finitely generated.

k,m

Nevertheless, we will be able to obtain considerable information about

the structure of J* & In particular, we will find upper and lower
s
bounds for dim Jk o which agree for k sufficiently large (k2m),
b
will prove that J =& is a free module of rank 2m over the

*,M k Jk,m
ring M*(SLZ(Z)), and will describe explicit algorithms for finding
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bases of Jk o @S a vector space over T and of J as a module over
5 b

Mk(SL2<Z))' The dimension formula obtained has the form
¥

m
(8) dim 3 = r§) dim M, = N(m)

for k even (and sufficiently large), where N(m) is given by

m 2
N(m) = [>%; ] ([x] = smallest integer »x) .
r=0

We will show that N(m) can be expressed in terms of class numbers of

imaginary quadratic fields and that (8) is equivalent to the formula

. new _ . new it -
9) dim Jk,m = dim Mzk_z(TO(m)) .
new i :
where MZk_Z(TO(m)) is the space of new forms of weight 2k-2 on Fo(m)

which are invariant under the Atkin-Lehner (or Fricke) involution

-k+1 _-2k+2
T

f(1) —>m FLew

f(-1/mT) and Jk,m

a suitably defined space of
"new'" Jacobi forms.

Chapter IV, which will be published as a separate work, goes more
deeply into the Hecke theory of Jacobi forms. In particular, it is
shown with the aid of a trace formula that the equality of dimensions
(9) actually comes from an isomorphism of the corresponding spaces as
modules over the ring of Hecke operators.

Another topic which will be treated in a later paper (by B.Gross,
W.Kohnen and the second author) is the relationship of Jacobi forms to
Heegner points. These are specific points on the modular curve
Xo(m) = HVPO(m) U {cusps} (namely, those satisfying a quadratic equa-
tion with leading coefficient divisible by m). It turns out that for

2

each n and r with r? < 4nm one can define in a natural way a class

P(n,r) € Jac(Xo(m))(Q) as a combination of Heegner points and cusps and
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that the sum 2: P(n,r) q® ¥ is an element of Jac(Xo(m))(Q) ®

ar Q 2,m

One final remark. Since this is the first work on the theory of
Jacobi forms, we have tried to give as elementary and understandable an
exposition as possible. This means in particular that we have always
preferred a more classical to a more modern approach (for instance,
Jacobi forms are defined by transformation equations in Hx € rather
than as sections of line bundles over a surface or in terms of the
representation theory of Weil's metaplectic group), that we have often
given two proofs of the same result if the shorter one seemed to be too
uninformative or to depend too heavily on special properties of the full
modular group, and that we have included a good many numerical examples.
Presumably the theory will be developed at a later time from a more

sophisticated point of view.

This work originated from a much shorter paper by the first author,
submitted for publication early in 1980. 1In this the Saito-Kurokawa
conjecture was proved for modular (Siegel and elliptic) forms on Fa(N)
with arbitrary level N. However, the exact level of the forms in the
bottom of diagram (7) was left open. The procedure was about the same
as here in 884-6. The second author persuaded the first to withdraw his
paper and undertake a joint study in a much broader frame. Sections 2
and 8-10 are principally due to the second author, while sections 1, 3-7
and 11 are joint work.

The authors would like to thank G. van der Geer for his critical

reading of the manuscript.
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Notations

We use W to denote the set of natural numbers, N, for NU({0}.
We use Knuth's notation l_xJ (rather than the usual [x]) for the
greatest-integer function max{ne Z[ngx} and similarly
[x] = min{nezlngx} = —L—XJ. The symbol [J denotes any square number.
By dln we mean d|n and (d,-g)= 1. In sums of the form Z or

dln
Z it is understood that the summation is over positive divisors only.
ad=% 9
The function Z d” (deN) is denoted Ov(n) .
d|n

The symbol e(x) denotes e2TrlX

, while em(x) and em(x) (mE€ W)
denote e(mx) and e(x/m), respectively. In e(x) and em(x), x is a
complex variable, but in em(x) it is to be taken in Z/mZ ; thus
em(ab_l) means em(n) with bn = a(mod m), and not e(a/bm).

We use Mt and Irl for the transpose of a matrix and for the n xn
identity matrix, respectively. The symbol [a,b,c] denotes the quadratic
form ax2+bxy+cy2.

¥ denotes the upper half-plane {TE (EIIm(T) >O}. The letters T
and z will always be reserved for variables in # and €, respectively,
with T = u+iv, z = x+1iy, q=e(1), T =e(z). The group SLz(Z) will
often be denoted by I', and the space of modular (resp. cusp) forms of
weight k on 1"l by Mk (resp. Sk). The normalized Eisenstein series
Ek € Mk (k24 even) are defined in the usual way; in particular one
has M, o= i) Mk
E = 1-504 2 0.(n)q".

. _ n
= C[EH,EGJ with E, = 1+240 2 Oa(n)q 5

The symbol " :=" means that the expression on the right is the

definition of that on the left.



Chapter I
BASIC PROPERTIES

§1. Jacobi Forms and the Jacobi Group

The definition of Jacobi forms for the full modular group
F] = SL,(Z) was already given in the Introduction. In order to treat
subgroups I C Tl with more than one cusp, we have to rewrite the
definition in terms of an action of the groups SLz(Z) and Z? on
functions ¢: XC » €. This action, analogous to the action

(1) [0 = (et L)k £ (%}:Z) (M - (: b) c Fl)

in the usual theory of modular forms, will be important for several
later constructions (Eisenstein series, Hecke operators). We fix

integers k and m and define

@ (4. [i b)) o

-k m( -cz? at+b z )
eTshel — & (CT+d)¢(CT+d >et+d

(¢ 9)er)

and

©) Gl I uD(r,2) = "0+ 222) ¢ (1,2 + AT+ W)
(awez’),

2mimx
e

where em(x) = (see "Notations'). Thus the two basic transfor-

mation laws of Jacobi forms can be written
- = 2
¢1k,mM—¢ mer), ol Xx=9¢ XezZ°) ,

where we have dropped the square brackets around M or X to lighten

the notation. One easily checks the relations

8-
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(¢|k,mM) {k’mM' = ¢|k,m(m') s (¢|mX) ImX' = ¢|m(X+X') ,

(4)
(qb]k o0 ]mXM = (¢|mx) ]k oM MM €T, x,x'€ z?)

They show that (2) and (3) jointly define an action of the semi-direct

product I"ll =T X z? (= set of products (M,X) with M El"l, X € z2
and group law (M,X) (M',X"')=(MM', XM' +X'); notice that we are writing
our vectors as row vectors, so Fl acts on the right), the (full)
Jacobi group. We will discuss this action in more detail at the end

of this section.

We can now give the general definition of Jacobi forms.

Definition. A Jacobi form of weight k and index m (k,m € N) on

a subgroup I C F) of finite index is a holomorphic function &: ¥ xC - T

satisfying
Do M= MET);
1) 9] X = ¢ (X € z2%);

111 ) for each M EI"I, (Mk,mM has a Fourier development of the
form Z?c:(n,r)qntgr (q=e(1), z=e(z)) with c(n,r) =0
unless n > r?/4m. (If ¢ satisfies the stronger condition
c(n,r) # 0 = n>r?/4m, it is called a cusp form.)

(ry s if

The vector space of all such functions ¢ is denoted Jk o

I'=T, we write simply Jk,m for Jk’m(l"l).

Remarks. 1. The numbers n,r in iii) are in general in @, not
in Z (but with bounded denominator, depending on I' and M).

2. We could define Jacobi forms with character, Jk’m(l’,X), by
inserting a factor X(M) in i) in the usual way.

3. Also, we could replace z’ by any lattice invariant under T,
e.g. by imposing congruence conditions modulo N if T =T(N). It would

therefore be more proper to refer to functions satisfying i)-iii)
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as Jacobi forms on the Jacobi group FJ = Iz’ (rather than on T).
However, we will not worry about this since most of the time we will
be concerned only with the full Jacobi group.

OQur first main result is

THEOREM 1.1. The space I m(I‘) 18 finite-dimensional.

This will follow from two other results, both of independent

interest:

THEOREM 1.2. Let ¢ be a Jacobil form of index m. Then for
fixed TEH, the function .z > ¢(1,2), 1f not identically zero, has
exactly 2m zeros (counting multiplicity) in any fundamental domain for

the action of the lattice Zt + Z on C.

Proof. It follows easily from the transformation law ii) that

1 ¢Z(T’Z) o} i
o1 # ———— dz = 2m (¢z =5 F = fundamental domain for C/ZT+Z),

(the expression E};"H? is invariant under =z - z+1 and changes by 2m
when one replaces z by z+T), and this is equivalent to the statement
of the theorem. Notice that the same proof works for ¢ meromorphic
(with "number of zeros'" replaced by '"number of zeros minus number of
poles'") and any m€ Z. A consequence is that there are no holomorphic
Jacobi forms of negative index, and that a holomorphic Jacobi form of

index 0 is independent of z (and hence simply an ordinary modular form

of weight k in T).

THEOREM 1.3. Let ¢ be a Jacobi form on T of weight k and
index m and \,W rational numbers. Then the function
f(1) = em(AZT) ¢ (T, AT+1W) is a modular form (of weight k and on some

subgroup of T' of finite index depending only on T and on A,u).
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For A=p=0 it is clear that T = ¢(1,0) is a modular form of
weight k on I'. We will prove the general case later on in this section
when we have developed the formalism of the action of the Jacobi group
further. Note that the Fourier development of f(tT) at infinity is

Y eGrwe(n,r) e((m\® +rA+n)1)

n,r

so that the conditions nz0, r? < 4nm  in the definition of Jacobi
forms are exactly what is required to ensure the holomorphicity of f
at «© in the usual sense.

To deduce 1.1, we pick any 2m pairs of rational numbers
(Ai,ui) IS Q2 with O‘i’ui) # (Aj,uj)(mod ZZ) for i#3j. Then the
functions fi(T) = em()\iT)(i)(T, )\iT+ui) lie in M.k(Ti) for some
subgroups Fi of I', and the map ¢ ~ {fi}i is injective by Theorem 1.2.
Therefore dim Jk,m(r) < 21: dim Mk(Ti); this proves Theorem 1.1 and
also shows that Jk,,m is 0 for k<O unless k=m=0, in which case it
reduces to the constants.

To prove Theorem 1.3, we would like to apply (3) to (\,n) € Q2.
However, we find that formula (3) no longer defines a group action if

we allow non-integral A and U, since
Gl D] ' w2 =

= (VT 20z + AT 4+ 22N T HUND)O(T, 2+ A T U+ Az 4 )

[

e(Zm)\u')(¢]m[>\+)\' u+u']) (t,2)

and e(2mA'M) will not in general be equal to 1. Similarly, the third
equation of (4) breaks down if X is not in 22 . Hence if we want to
extend our actions to SL,(@) (or SLZ(]R)) and Q? (or R?), we must
modify the definition of the group action.

The verification of the third equation in (4) depends on the two
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elementary identities

z + MT +

z at+b
cT+d+>\CT+d+u B cT+d d
2 at+b z cz? 2 C(Z+>\1T+u1)2
A c'r+d+2>‘ c’[+d—c’l’+d+>\u = >‘11+2>‘lz_ ct+d +)‘1U1 2

where (X, ) = (A W) (2 g) Thus to make this equation hold for

arbitrary M = (2 3) = SLZ(]R) and X = (Ap) € R?> we should replace

(3) by

(5) @] 0r uD(1,2)  := em(O2T + 2Xz + M O(T, z+ AT+ 1)

(LW €RY

this is compatible with (3) because em()\p) =1 feor A, € Z.
Unfortunately, (5) still does not define a group action; we now find
L m LU v

(6) (¢1mx)|mx e (A" -2 u)¢|m(x+x )

=0 w, x'=A"u") €R

To absorb the extra factor, we must introduce a scalar action of the

group IR by
@) (@] (kD (T,2)  := e(m)(t,2) (K ER)

and then make a central extension of R? by this group R; i.e.

replace R? by the Heisenberg group

e = {[Ow.x] [ O e R?, <eR} ,

[ LIl u k'] = [OEA p+u'), k+c" +an' =1yl

(This group is isomorphic to the group of upper triangular unipotent

3 x 3 matrices via
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1 A L(k+ )
[XW,k] +— 0 1 H B)

0 0 1

The subgroup C]R i= {[(0 0),«x], ke ]R} is the center of H]R and

/C. = R%. Ve can now combine (5) and (7) into an action of H]R

H]R]R

by setting
OIL W,k (1,2) = e (VT +2Az + Ap + k) b (T, Z+AT+Y)

and this now 7Zs a group action because the extra factor em()\'u - )\u')
in (6) is compensated by the twisted group law in H]R' Because this
twist involves Ap' —)\'p = det(;\\. ﬁ,) and the determinant is preserved

by SL,, the group SLZ(]R) acts on H]R on the right by
[X,kIM = [XM,«] (XeR?, keR, M€ SL,(R)) ;

the above calculations then show that all three identities (4) remain
true if we now take M,M' € SLZ(]R) and X,X' € H]R and hence that
equations (2), (5) and (7) together define an action of the semidirect
product SLZ(IR) X HIR'

In the situation of usual modular forms, we write ¥ as G/K,
where G = SL,(R) contains I' as a discrete subgroup with Vol(I'\G)
finite and K=S0(2) is a maximal compact subgroup of G. Here we would
like to do the same. However, the group SL, (R) x H]R contains
TJ =TI x Zz with infinite covolume (because of the extra R in H]R)
and its quotient by the maximal compact subgroup SO(2) is H x € x R
rather than X C. To correct this, we observe that the subgroup ZCR
acts trivially in (7), so that (2), (5) and (7) actually define an

action of the quotient group

J
G 1= SLZ(]R) X H]R/CZ



