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Preface

This book is well travelled. My teaching of optimisation techniques began
at the University of Bristol in 1962, when Ronald Tress (then head of the
Department of Economics) and my other colleagues there were so kind
(rash?) as to agree to my proposal for an undergraduate course in optimisa-
tion. In consequence, a first draft of Chapters 1—-4 was written in 1970.

In 1971-2, my appointment as visiting professor in the Department of
Economics of the University of Virginia resulted in my teaching a
mathematical economics course in which I included non-linear optimisa-
tion, with some emphasis on the Kuhn—Tucker conditions; this yielded a
first draft of Chapter 7. From 1977 onwards, a course assignment in the
Department of Economics of the University of Sydney renewed my interest
in the teaching of optimisation, and eventually led to rough drafts of most
of the remaining chapters.

The first draft of the complete text was prepared in Sydney in 1980 and
1981, with the able help of Swee Kuen Pan, who has outstanding skill in
the typing of mathematical work.

Much of the final revision was done during the later part of the academic
year 19823, while I was a visiting scholar at the University of Virginia, on
sabbatical leave from the University of Sydney. The work was completed
during the (northern) summer of 1983, while I was a visitor at the London
Business School. The generous and friendly nature of my two hosts is
greatly appreciated.

Most of the final draft was typed by Swee Kuen Pan. Some later chapters
were typed by Sarah Harrod at the London Business School.

The publisher’s (anonymous) readers provided a helpful blend of en-
couraging praise and trenchant criticism; and Nicholas Brealey of Allen &
Unwin insisted on careful and extensive revision.

My wife Pauline suffered the usual pains associated with having a hus-
band working on a book; she also proof read the typescript, prepared the
index and claims to have improved the grammatical quality of the text.

To all these people go my thanks. Of course, I take sole responsibility for
the book’s remaining imperfections.

Sydney
September 1983 GORDON MILLS
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Introduction

THE ROLES FOR OPTIMISATION IN ECONOMIC ANALYSIS

Because the fundamental economic problem is one of making the best use
of limited resources, mathematical optimisation methods have an important
position in the economist’s tool-kit. Indeed, various different kinds of
economic study employ models of optimising behaviour, and hence use
such methods.

One major field in which optimisation methods are widely used is
neoclassical economic theory, which perceives all economic agents as op-
timisers. Or, to be more specific, the theory postulates that an economic
agent chooses values for decision variables (e.g. consumption quantities,
prices charged by manufacturers) so as to optimise the value taken by the
target or objective function (e.g. profit, utility). The choice of values for the
decision variables is, of course, circumscribed by various limitations in-
herent in the situation being modelied (e.g. the restricted availability of
some resources), and these limitations are expressed as constraints in the
mathematical model. The optimising analysis is then used to explain or
predict behaviour. In recent decades, economists have attempted to come
to grips more effectively with the complexities of the real world by building
more detailed models, and this in turn has led to the deployment (and, on
occasion, even the invention and development) of more powerful mathe-
matical methods.

Of course, the applicability of optimisation techniques is not restricted to
the particular view of the world that is implicit in such neoclassical theory.
This proposition is most amply demonstrated by the use of these techniques
in economic planning. Here the aim of the study is explicitly prescriptive:
given the target of the economic agent, what investments should be made,
what output levels should be set, what purchases should be made, so as to
meet this target to the greatest degree possible? The use of such planning
techniques transcends geographical and political boundaries, as may be seen
readily by considering some examples.

The transnational oil company pursues its capitalistic goals with the help
of planning tools such as mathematical programming procedures which
help it to decide (inter alia) what pattern of purchases of crude oils of
differing specifications will enable it to meet stated market demands at
minimum cost. Equally, similar optimisation techniques are used (albeit
with different goals) at a variety of levels in the planning bureaucracies of
the centrally planned economies of Eastern Europe.

The universality of interest in the use of optimisation techniques to guide
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planning decisions may be illustrated also from the history of what has
come to be called ‘linear programming’, one of the most widely used
planning techniques. When consulted in 1938 about a practical problem
concerning the most economical utilisation of resources in a local enterprise
a Russian mathematician, L. V. Kantorovich, came to realise that there was
an entire class of such problems that could be formulated in terms of a
linear optimising model; he also realised that the development of an effec-
tive mathematical procedure to find the optimal solution to such a problem
would be a far from trivial task. In 1947, an American mathematician,
G. B. Dantzig, independently came to the same understanding (while con-
sidering some planning problems occurring in large military enterprises), and
discovered the first effective general-purpose mathematical procedure for
computing optimal solutions to such problems.

Since then, development of linear programming and related mathe-
matical optimisation techniques has gone on apace in these two and many
other countries. Some of the purely mathematical research, and most of the
development of skills in the practical use of these planning techniques, has
taken place in planning agencies and in the planning sections of productive
enterprises, government departments and so forth. This work has con-
tributed to the growth of an entire profession of people who specialise in
model-building for planning decisions, who practise what is now often
called management science or operational research, and for whom
mathematical optimisation techniques are an important tool.

Much the same set of mathematical optimisation methods is used in the
two areas of economic theory and applied planning (prescriptive) analysis.
However the style of use differs. Traditionally the economic theorist has
been concerned primarily with so-called comparative statics analysis: this
postulates a change in some exogenous factor (e.g. an increase in taxation,
a discovery of a new oil field, an increase in pay in an industry) and studies
the behaviour of the relevant economic agents before and after the change;
each of the ‘before’ and ‘after’ situations is analysed in a static way, i.e.
as if it had prevailed for a long time and all agents had adjusted fully to
it; the analysis is not concerned with the process of transition, in which the
agents move from the old to the new situation. Thus the study requires only
a double application of a static, single-period model; and hence the analysis
may not be at all complex.

In contrast, a proportion of the more recent work in economic theory
deals with dynamic situations, in which a principal focus is the way in which
economic agents adjust their behaviour over time. These studies address
questions such as: what is the optimal consumption pattern for an indi-
vidual over a lifetime, given that the individual’s income rate first increases,
and then (later in life) decreases? and how and at what rates will society use
up stocks of an exhaustible natural resource? In such dynamic analysis, the
distinctive feature is not merely that time passes; rather it is that some
underlying features necessarily change with the passage of time. For
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example, the individual grows older; the resource stock is diminished. And
in such analyses, the transitions matter: the rates of change (per unit of
time) of the various economic magnitudes are an essential feature of the
situation being studied,

For such studies in economic dynamics, the optimising models are
necessarily more complex. Because the values of the economic variables can
change over time, all variables must be identified by time — i.e. for each
variable, a distinction must be made between the value at time ¢ and the
value at each other time. If time is divided into discrete periods (as is often
the practice), then a dynamic model necessarily deals with a significant
number of such periods, and this makes the model larger than that for a
(corresponding) analysis in comparative statics, where the model represents
only a single time-period.

Most prescriptive studies for policy decisions also require dynamic formu-
lations, and hence here too multi-period models are commonly used. In
many such contexts, the stylised representations often used in economic
theory are inappropriate; instead, the specific history of the situation must
be included in the model. Where the entity is not newly begun (as, for
example, where the model represents production opportunities open to a
long-established firm), it is usually necessary to include the history of past
investment decisions, at least where these lead to a heterogeneous collection
of productive capacities. Such studies are termed exercises in historical
dynamics. Because of the need to include historical detail, the models tend
to be even more complex than those used in dynamic studies in economic
theory.

A further reason for the additional complexity of applied prescriptive
models is the empirical need to define commodities very narrowly, a
practice that can lead to very large dimensionality. Models with thousands
of commodity variables are by no means uncommon, and the number of
resource and other constraints can also be very considerable. In much
economic theory, on the other hand, it is often sufficient to postulate only
two commodities; where the model contains more than two, the stylisation
may permit all or many products to be regarded as having similar general
properties, and hence not requiring individual treatment.

Thus developments in the use of optimisation methods in economic
analysis (a term used here to embrace both theory and prescriptive policy
studies) have depended not only on the research of mathematicians (and
economists, and others) who have developed the new mathematical tech-
niques, but also on the astounding growth in computational power afforded
by the advances in micro-electronics, and needed to handle the great dimen-
sionality required in many models.

Nevertheless the dazzling results stemming from these conceptual and
engineering advances must not be allowed to hide the fact that the building
of the mathematical model is still an art that requires good judgement and
sense. No matter how great the intellectual prowess in developing optimis-
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ing procedures, and no matter how striking our ability to make enormous
optimising calculations in remarkably small time-spans, if the model is a
foolish, or merely a poor, representation of the problem in hand, then the
(nominally) ‘optimal’ results will not bring benefits; indeed, if they are
misleading, they can be positively dangerous in the hands of a susceptible
and enthusiastic innocent.

Although there can be significant problems in modelling the technology
and in ascertaining the resource or other constraints, the greatest difficulty
is often found in establishing an acceptable maximand (or minimand, as the
case may be). Does the firm really want to go the whole way in maximising
profits? If the individual is to be regarded as maximising utility, how is
utility to be conceptualised and measured? It seems that it is doubts on this
aspect, above all, that lead some to criticise and reject formal optimisation
in economic analysis.

Although such wholesale rejection is usually no more than an act of
nihilism, those who favour and practise formal optimisation must never
forget that model-formulation is usually the weakest link in the whole
business. In empirical prescriptive work (though not in economic theory),
some consolation is to be had from the fact that, with the great computa-
tional power now at our disposal, it is often possible to use a maximand
(which is admitted to be an unsatisfactory formulation) simply to lead the
calculations to an initial solution, which (it is hoped) is at least ‘sensible’,
and perhaps even ‘good’. Further calculations can then be used to explore
other good solutions in the neighbourhood of the first. The choice among
these alternative policies is then made directly by the decision-makers, who
first use the formal optimising calculations to guide them to the more
promising outcomes in the realm of the possible, and then use their judge-
ments about what is preferable to select among alternatives, even when

those preferences can not be made sufficiently explicit for formalisation in
a maximand.

THE ORGANISATION OF THE BOOK

The style of the book is informal, and I have attempted to present
arguments in a detailed step-by-step manner, often with intuitive explana-
tions, in order to facilitate understanding by readers who do not consider
themselves specialists in mathematical work. In general, computational
procedures are not considered; mathematical proofs are rarely given, but I
do try to convince the reader of the plausibility of the results. At the same
time, such informality is no excuse for lack of rigour. My aim is to state
theorems with precision, and to demonstrate the great care that is needed
for safe and successful application of the mathematical tools.

Although the greater part of the book is devoted to explanation of
mathematical tools, there are some parts dealing with the art of model
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formulation; and, throughout the book, there is discussion of economic
uses and interpretations.

The first four chapters deal with linear models, that is to say models
where the maximand is a linear function of the decision variables, and
where the constraints are also linear in those variables. Chapter 1 introduces
in some detail the components of the linear model; the discussion also serves
to illustrate the elements of the general problem in constrained optimisa-
tion. Chapter 2 identifies the nature of the optimal solution in a linear
model and gives a very brief introduction to linear programming, i.e. to the
basic ideas underlying the computational procedures used to calculate the
optimum in a linear model. This mathematical analysis is continued in
Chapter 3, which defines and interprets the so-called ‘duality’ properties of
the optimum solution, properties that are of crucial significance in many
economic applications. Chapter 4 provides more examples of the formula-
tion of linear models; it considers the possibility of alternative formula-
tions, and discusses the equivalence between optimisation and competitive
equilibrium.

These linear models may be used to represent static or single-period situa-
tions, and the illustrations in the first four chapters are all of this kind.
However, a great strength of such modelling is that it may be extended to
multi-period situations; it is used in this way both in economic theory and
in prescriptive policy studies. Chapter 6 treats such optimisation over time:
the first few sections deploy linear models in this new context; the later parts
deal with the concept of the planning horizon, and consider the question of
consistency in decision-making over time, i.e. where the agent can change
later parts of a plan before they have been implemented.

Neoclassical economic theory supposes that, at the outset of the optimisa-
tion, a list of the efficient solutions is available; the economist’s task is then
to apply the relevant economic criterion in order to select the most desirable
of these efficient solutions. This view supposes (in effect) that some
engineers or other generous souls have carried out some prior optimisation
in order to produce the list of efficient points. For work in economic theory,
this approach may be entirely satisfactory, since the objective is to establish
the gualitative nature of the optimum. For empirical work in prescriptive
policy studies (or elsewhere), no such short-cut is ever possible. Instead, the
analysis must begin with the fundamental building blocks. This is what the
linear (programming) model does, and thus it is no surprise to find
programming models much used in empirical work. This theme, in which
traditional neoclassical theory is contrasted with programming analyses, is
explored in detail in Chapter 5, in the context of production theory.

A further comparison between neoclassical theory and programming
models relates to the nature of the optimal solution. The traditional theory
uses calculus-based models, in which it is supposed that non-negativity (and
similar) requirements are met automatically. Programming methods in con-
trast (and more realistically) give explicit recognition to such requirements,
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and the optimal solution is not uncommonly a ‘boundary’ solution, i.e. at
a point where the non-negativity (or other) requirement is an effective con-
straint. Indeed, it is one of the particular strengths of linear programming
that it recognises this point, and uses the property to guide efficient methods
of calculation.

For non-linear problems, the traditional calculus approach has been
extended in recent years. The crucial innovation is the development of the
Kuhn—Tucker conditions; these characterise an optimum when the problem
has inequality constraints, which is of course the norm in economic models.
These developments are treated in Chapter 7.

The Kuhn—Tucker conditions may be used in (qualitative) inquiries in
economic theory, and also to guide explicit numerical calculations for
small-scale models. But the conditions themselves do not comprise a com-
putational procedure and hence are not applicable, as they stand, to large-
scale numerical cases. The first section of Chapter 8 considers the nature of
the non-linear optimum, to show why computation is difficult in the general
case, and briefly describes some general computational procedures. The
next two sections deal with relatively powerful computational procedures
for separable and quadratic programming, two special cases that are impor-
tant in economic analysis. The related topics of indivisibilities and
diseconomies of scale (and the problems they create for competitive
markets) are considered in the remaining parts of the chapter.

Multi-period situations can be regarded as merely one (important) class
of multi-stage decision processes, in which a number of decisions are taken
sequentially (or may be so regarded). Often, there are a number of alter-
native computational procedures that may be used for such a problem.
However, the conceptual approach known as dynamic programming com-
monly leads to the most effective computational procedure; this is the sub-
ject of Chapter 9.

Chapter 10 presents detailed accounts of some further economic applica-
tions using formal optimising methods. The aim of the chapter is to convey
to the student something of the practicalities of using such methods in
economic analysis. In the same spirit, the chapter ends with some advice on
reading such research in the journals and research monographs.

Finally it must be noted that the book does not discuss uncertainty.
Recent years have seen very important developments in the modelling of
uncertainty (mainly by using probabilistic concepts), and in consequence
significant methods and results have been established, both in economic
theory and in prescriptive work. But these problems and methods generally
require models that are even more complex than those noted earlier in this
introduction, and it seems best not to include them in a book intended for
the student’s first approach to the field of optimisation.

To help the student with limited mathematical background, Appendix A
identifies the mathematical prerequisites, and offers advice on reading for
any student who wishes to undertake some revision of these topics. Some
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students (especially those with a business orientation) may come to the book
with a limited knowledge of the fundamental concepts of economic theory.
Although some such concepts are sketched briefly when first used in the
text, fuller and more formal definitions of some of the terms are given in
a glossary (Appendix B).

Traditionally the student of economic theory has not been led to pay
sufficient attention to the practicalities of applying the analytical models.
As should be clear already, this book seeks to avoid that shortcoming, and
it is hoped that such a student will wish to read the whole book. However,
any student of theoretical inclination who insists on a narrow specialisation
may omit, without significant loss of continuity, a few ‘very applied’
sections, such as: 1.10, 2.5, 4.1, 4.2, 5.10, 8.2, 8.3 and 8.8.

Similarly the business-oriented student should read the whole book to
obtain the widest perspective. But lack of economic background may
encourage such a student to omit, again without significant loss of conti-
nuity, sections 4.4, 4.5, 4.6 and 8.7.

Some chapters need not be studied in the order in which they are
presented. The first three chapters must be read at the outset. Thereafter,
for an initial reading, the student may pass over any or all of Chapters 4,
5 and 6 if it is desired to come quickly to the non-linear optimisation of
Chapter 7. On the other hand, the student with business and management
interests might read the first three sections of Chapter 4, include or pass
over Chapter 5 according to taste, and then read Chapters 6 and 9 before
turning to the non-linear and related topics discussed in Chapters 7 and 8.
But all students are urged to return later to the omitted chapters, in order
to get a balanced and full picture of economic optimisation.
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The Formulation of
Linear Models

1.1 PROGRAMMING PROBLEMS

Many decision problems facing economic agents can be represented by
programming models. The word ‘programming’ seems to have been used
initially to denote that the aim of the economic calculation is to find a
programme, or set of decisions. The mathematical techniques for perform-
ing such calculations have become known as ‘mathematical programming’.
A distinctive feature of these techniques is that they are directed towards
Jinding numerical solutions (as distinct from merely describing the general
properties of solutions); hence the emphasis is on computational efficiency.

The programme or solution that is sought is the one that optimises some
function; depending on the context, the aim is to maximise something
desirable (e.g. profits, utility, output of steel, balance-of-payments surplus)
or to minimise something undesirable (e.g. costs, the time it takes to com-
plete a set of tasks). As in all optimisation problems in economics, resources
are scarce, and hence the programming model has constraints to reflect this.
The model may also need to include constraints to represent other require-
ments that the decision variables must meet.

This and the following three chapters deal with l/inear programming
problems; in other words, the models optimise linear functions, subject to
linear constraints. This might turn out to be a serious restriction on our field
of interest. But as will be seen, a wide variety of problems can be
represented satisfactorily by linear models. In many cases, the problem
naturally takes a linear form; in some of the cases where this is not so, the
problem may be represented approximately by a linear model, with results
that are a sufficiently good approximation to be worth using. However,
there are many cases where a linear model will not serve, and some of these
are considered in later chapters.

Until further notice, it is supposed that the commodities involved in the
models are continuously divisible, i.e. they may be measured in fractions of
a unit if necessary. On many occasions, this will be conceptually precise
(e.g. tons of steel); on other occasions it will be a good approximation (e.g.
if weekly production is of the order of 2,000 cars, it will be permissible to
round to the nearest car any fractional result that comes out of the pro-
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gramming model). In yet other cases, the divisibility assumption is not
tenable. For example, if a model solution proposes that 1.42 aircraft be
flown from A to B, the answer clearly will not do as it stands. Furthermore,
it is by no means obvious what rounding would be best, since the change
made by rounding will be a large proportion of the original answer. In these
‘awkward’ cases, a rather different approach is necessary; this too is
discussed later.

This chapter introduces three examples of problems that may be
represented by linear models. It shows how the models may be formulated
(although the task of finding solutions is postponed until the next chapter)
and goes on to discuss some general features of such linear models.

1.2 A FIRST LINEAR MODEL: EXAMPLE A

For a first example (Example A), suppose that a manufacturer of a
homogeneous commodity has stocks of 100 tons of the commodity at depot
A and 250 tons at depot B; he has agreed to supply customers C, D and E
(each at different locations) with 50, 120 and 180 tons respectively, as
indicated in Table 1.1. The total stock (of 350 tons) exactly matches the
total tonnage to be delivered to the customers, and thus all the stocks must
be used up; all that the manufacturer has to decide is how many tons should
be sent from each depot to each customer. Suppose that the manufacturer’s
aim is to arrange delivery at minimum transport cost, and that he finds that
the cost of transport on any particular route is constant per ton irrespective
of how many tons are sent along that route from a particular depot to a
particular customer. Specific cost assumptions for each route are indicated
in Table 1.1, and these complete the specification of the problem.
Model-building is begun by defining algebraic variables for the
unknowns: let x; represent the number of tons to be sent from depot A to
customer C, x2 the number of tons from depot A to customer D, and so

Table 1.1 The data for Example A — a transportation problem

Depot A Depot B
No. of tons available: 100 250
Customer C Customer D Customer E

No. of tons required: 50 120 180
Route Transport cost Variables (number of tons

($ per ton) along each route)
AtoC 5 X1
AtoD 10 X2
AtoE 12 X3
Bto C 3 X4
BtoD 4 Xs

Bto E 9 X6




