Phil Trinder
Greg Michaelson
Ricardo Pena (Eds.)

Implementation of
Functional Languages

15th International Workshop, IFL 2003
Edinburgh, UK, September 2003
Revised Papers

LNCS 3145

@ Springer

Implementation of
Functional Languages

15th International Workshop, IFL 2003
Edinburgh, UK, September 8-11, 2003
Revised Papers

@ Springer

Volume Editors

Phil Trinder

Greg Michaelson

Heriot-Watt University

School of Mathematical and Computer Sciences
Riccarton, EH14 4AS, UK

E-mail: {trinder, greg} @macs.hw.ac.uk

Ricardo Pefia

Universidad Complutense de Madrid

Facultad de Informatica

Departamento Sistemas Informaticos y Programacion
C/ Juan del Rosal, 8, 28040 Madrid, Spain

E-mail: ricardo @sip.ucm.es

Library of Congress Control Number: 2004114139

CR Subject Classification (1998): D.3, D.1.1, E3

ISSN 0302-9743
ISBN 3-540-23727-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2004
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Olgun Computergrafik
Printed on acid-free paper SPIN: 11342205 06/3142 543210

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University; UK
Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler
University of Surrey, Guildford, UK
Jon M. Kleinberg
Cornell University, Ithaca, NY, USA
Friedemann Mattern
ETH Zurich, Switzerland
John C. Mitchell
Stanford University, CA, USA
Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

New York University, NY, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

3145

Preface

Functional programming has a long history, reaching back through early realisa-
tions in languages like LISP to foundational theories of Computing, in particular
A-calculus and recursive function theory. In turn, functional programming has
had wide influence in Computing, both through developments within the disci-
pline, such as formal semantics, polymorphic type checking, lazy evaluation and
structural proof, and as a practical embodiment of formalised approaches, such
as specification, transformation and partial application.

One of the engaging features of functional programming is precisely the
crossover between theory and practice. In particular, it is regarded as essen-
tial that all aspects of functional programming are appropriately formalised,
especially the specification and implementation of functional languages. Thus,
specialist functional programming events like the International Workshop on
the Implementation of Functional Languages (IFL) attract contributions where
strong use is made of syntactic, semantic and meta-mathematical formalisms to
motivate, justify and underpin very practical software systems.

IFL grew out of smaller workshops aimed at practitioners wrestling with
the nuts and bolts of making concrete implementations of highly abstract lan-
guages. Functional programming has always been bedeviled by an unwarranted
reputation for slow and inefficient implementations. IFL is one venue where such
problems are tackled head on, always using formal techniques to justify practical
implementations.

The 15th International Workshop on the Implementation of Functional Lan-
guages (IFL’03) was held in Edinburgh, Scotland from the 8th to the 11th of
September, 2003. 42 people attended the Workshop, with participants from Aus-
tralia, Germany, Holland, Hungary, Ireland, Russia, Spain, Sweden and the USA,
as well as from the UK.

There were 32 presentations at IFL’03, in streams on Testing, Compila-
tion and Implementation, Applications, Language Constructs and Programming,
Types and Program Analysis, Concurrency and Parallelism, and Language In-
terfacing. 28 papers were submitted for the draft proceedings. After refereeing,
12 papers were selected for publication in these proceedings, an acceptance rate
of 42%.

The Programme Committee was pleased to award the 2nd Peter Landin Prize
for the best IFL paper to Pedro Vasconcelos, first author of Inferring Costs for
Recursive, Polymorphic and Higher-Order Functional Programs®.

The 16th International Workshop on the Implementation and Application of
Functional Languages will be held in Liibeck, Germany in September 2004. For
further details, please see: http://www.isp.uni-luebeck.de/if104/index.htm.

! Co-author Kevin Hammond honourably declined to share the prize as he was asso-
ciated with its establishment.

VI Preface

Acknowledgments

IFL’03 was organised by the Department of Computer Science, School of Math-
ematical and Computer Sciences, Heriot-Watt University.

We would like to thank June Maxwell and Christine Mackenzie for their most
able Workshop administration and financial arrangements. We would also like
to thank Andre Rauber Du Bois for wrangling the WWW site, and Abyd Al
Zain and Jann Nystrom for Workshop gophering.

We are pleased to acknowledge the sponsorship of the British Computer
Society Formal Aspects of Computing Special Interest Group.

May 2004 Phil Trinder, Greg Michaelson and Ricardo Pena
Editors

Preface VII

Programme Committee

Thomas Arts IT-University in Gothenburg, Sweden

Clemens Grelck University Liibeck, Germany

Stephen Gilmore University of Edinburgh, UK

Kevin Hammond University of St Andrews, UK

Frank Huch Christian-Albrechts-University of Kiel, Ger-
many

Barry Jay University of Technology Sydney, Australia

Greg Michaelson (Chair) Heriot-Watt University, UK

Yolanda Ortega Mallen Universidad Complutense de Madrid, Spain

Ricardo Pena Universidad Complutense de Madrid, Spain

Simon Peyton Jones Microsoft Research, UK

Rinus Plasmeijer University of Nijmegen, The Netherlands

Jocelyn Serot Blaise Pascal University, France

Phil Trinder (Chair) Heriot-Watt University, UK

David S. Wise Indiana University, USA

Referees

Abdallah Al Zain Ralf Laemmel Clara Segura

Artem Alimarine Hans-Wolfgang Loidl Sjaak Smetsers

Bernd Braflel Rita Loogen Jonathan Sobel

Olaf Chitil Jan Henry Nystrom Don Syme

Koen Claessen Enno Ohlebusch John van Groningen

Walter Dosch Lars Pareto Arjen van Weelden

Andre Rauber Du Bois Robert Pointon Pedro Vasconcelos

David de Frutos Escrig Fernando Rubio

Michael Hanus Sven-Bodo Scholz

Sponsors

5 -

o
N |

Lecture Notes in Computer Science

For information about Vols. 1-3198

please contact your bookseller or Springer

Vol. 3305: PM.A. Sloot, B. Chopard, A.G. Hoekstra
(Eds.), Cellular Automata. XV, 883 pages. 2004,

Vol. 3302: W.-N. Chin (Ed.), Programming Languages and
Systems. XIII, 453 pages. 2004.

Vol. 3299: F. Wang (Ed.), Automated Technology for Ver-
ification and Analysis. XII, 506 pages. 2004.

Vol. 3294: C.N. Dean, R.T. Boute (Eds.), Teaching Formal
Methods. X, 249 pages. 2004.

Vol. 3293: C.-H. Chi, M. van Steen, C. Wills (Eds.), Web
Content Caching and Distribution. IX, 283 pages. 2004.

Vol. 3292: R. Meersman, Z. Tari, A. Corsaro (Eds.), On the
Move to Meaningful Internet Systems 2004: OTM 2004
Workshops. XXIII, 885 pages. 2004.

Vol. 3291: R. Meersman, Z. Tari (Eds.), On the Move to
Meaningful Internet Systems 2004: CooplS, DOA, and
ODBASE. XXYV, 824 pages. 2004.

Vol. 3290: R. Meersman, Z. Tari (Eds.), On the Move to
Meaningful Internet Systems 2004: CooplS, DOA, and
ODBASE. XXV, 823 pages. 2004.

Vol. 3289: S. Wang, K. Tanaka, S. Zhou, T.W. Ling, J.
Guan, D. Yang, F. Grandi, E. Mangina, L.-Y. Song, H.C.
Mayr (Eds.), Conceptual Modeling for Advanced Appli-
cation Domains. XXII, 692 pages. 2004.

Vol. 3288: P. Atzeni, W. Chu, H. Lu, S. Zhou, T.W. Ling
(Eds.), Conceptual Modeling — ER 2004. XXI, 869 pages.
2004.

Vol. 3287: A. Sanfeliu, J.FM. Trinidad, J.A. Carrasco
Ochoa (Eds.), Progress in Pattern Recognition, Image
Analysis and Applications. XVII, 703 pages. 2004.

Vol. 3286: G. Karsai, E. Visser (Eds.), Generative Pro-
gramming and Component Engineering. XIII, 491 pages.
2004.

Vol. 3284: A. Karmouch, L. Korba, E.R.M. Madeira
(Eds.), Mobility Aware Technologies and Applications.
XII, 382 pages. 2004.

Vol. 3281: T. Dingsgyr (Ed.), Software Process Improve-
ment. X, 207 pages. 2004.

Vol. 3280: C. Aykanat, T. Dayar, I. Kérpeoglu (Eds.), Com-
puter and Information Sciences - ISCIS 2004. X VIII, 1009
pages. 2004.

Vol. 3278: A. Sahai, F. Wu (Eds.), Utility Computing. XI,
272 pages. 2004.

Vol. 3274: R. Guerraoui (Ed.), Distributed Computing.
XIII, 465 pages. 2004.

Vol. 3273: T. Baar, A. Strohmeier, A. Moreira, S.J. Mel-
lor (Eds.), <<UML>> 2004 - The Unified Modelling
Language. XIII, 454 pages. 2004.

Vol. 3271: J. Vicente, D. Hutchison (Eds.), Management
of Multimedia Networks and Services. XIII, 335 pages.
2004.

Vol. 3270: M. Jeckle, R. Kowalczyk, P. Braun (Eds.), Grid
Services Engineering and Management. X, 165 pages.
2004.

Vol. 3269: J. Lopez, S. Qing, E. Okamoto (Eds.), Informa-
tion and Communications Security. X1, 564 pages. 2004.

Vol. 3266: J. Solé-Pareta, M. Smimov, P.V. Mieghem, J.
Domingo-Pascual, E. Monteiro, P. Reichl, B. Stiller, R.J.
Gibbens (Eds.), Quality of Service in the Emerging Net-
working Panorama. XVI, 390 pages. 2004.

Vol. 3265: R.E. Frederking, K.B. Taylor (Eds.), Machine
Translation: From Real Users to Research. X1, 392 pages.
2004. (Subseries LNAI).

Vol. 3264: G. Paliouras, Y. Sakakibara (Eds.), Gram-
matical Inference: Algorithms and Applications. XI, 291
pages. 2004. (Subseries LNAI).

Vol. 3263: M. Weske, P. Liggesmeyer (Eds.), Object-
Oriented and Internet-Based Technologies. XII, 239
pages. 2004.

Vol. 3262: M.M. Freire, P. Chemouil, P. Lorenz, A. Gravey
(Eds.), Universal Multiservice Networks. XIII, 556 pages.
2004.

Vol. 3261: T. Yakhr\o (Ed.), Advances in Information Sys-
tems. XIV, 617 pages. 2004.

Vol. 3260: .G.M.M. Niemegeers, S.H. de Groot (Eds.),
Personal Wireless Communications. XIV, 478 pages.
2004.

Vol. 3258: M. Wallace (Ed.), Principles and Practice of
Constraint Programming — CP 2004. XVII, 822 pages.
2004.

Vol. 3257: E. Motta, N.R. Shadbolt, A. Stutt, N. Gibbins
(Eds.), Engineering Knowledge in the Age of the Semantic
Web. XVII, 517 pages. 2004. (Subseries LNAI).

Vol. 3256: H. Ehrig, G. Engels, F. Parisi-Presicce,
G. Rozenberg (Eds.), Graph Transformations. XII, 451
pages. 2004.

Vol. 3255: A. Bencziir, J. Demetrovics, G. Gottlob (Eds.),
Advances in Databases and Information Systems. XI, 423
pages. 2004.

Vol. 3254: E. Macii, V. Paliouras, O. Koufopavlou (Eds.),
Integrated Circuit and System Design. XVI, 910 pages.
2004.

Vol. 3253: Y. Lakhnech, S. Yovine (Eds.), Formal Tech-
niques, Modelling and Analysis of Timed and Fault-
Tolerant Systems. X, 397 pages. 2004.

Vol. 3252: H. Jin, Y. Pan, N. Xiao, J. Sun (Eds.), Grid and
Cooperative Computing - GCC 2004 Workshops. XVIII,
785 pages. 2004.

Vol. 3251: H. Jin, Y. Pan, N. Xiao, J. Sun (Eds.), Grid and
Cooperative Computing - GCC 2004. XXII, 1025 pages.
2004.

Vol. 3250: L.-J. (LJ) Zhang, M. Jeckle (Eds.), Web Ser-
vices. X, 301 pages. 2004.

Vol. 3249: B. Buchberger, J.A. Campbell (Eds.), Artificial
Intelligence and Symbolic Computation. X, 285 pages.
2004. (Subseries LNAI).

Vol. 3246: A. Apostolico, M. Melucci (Eds.), String Pro-
cessing and Information Retrieval. X1V, 332 pages. 2004.

Vol. 3245: E. Suzuki, S. Arikawa (Eds.), Discovery Sci-
ence. XIV, 430 pages. 2004. (Subseries LNAI).

Vol. 3244: S. Ben-David, J. Case, A. Maruoka (Eds.), Al-
gorithmic Learning Theory. X1V, 505 pages. 2004. (Sub-
series LNAI).

Vol. 3243: S. Leonardi (Ed.), Algorithms and Models for
the Web-Graph. VIII, 189 pages. 2004.

Vol. 3242: X. Yao, E. Burke, J.A. Lozano, J. Smith, J.J.
Merelo-Guervés, J.A. Bullinaria, J. Rowe, P. Tifo, A.
Kabén, H.-P. Schwefel (Eds.), Parallel Problem Solving
from Nature - PPSN VIII. XX, 1185 pages. 2004.

Vol. 3241: D. Kranzlmiiller, P. Kacsuk, J.J. Dongarra
(Eds.), Recent Advances in Parallel Virtual Machine and
Message Passing Interface. XIII, 452 pages. 2004.

Vol. 3240: 1. Jonassen, J. Kim (Eds.), Algorithms in Bioin-
formatics. IX, 476 pages. 2004. (Subseries LNBI).

Vol. 3239: G. Nicosia, V. Cutello, P.J. Bentley, J. Timmis
(Eds.), Artificial Immune Systems. XII, 444 pages. 2004.
Vol. 3238: S. Biundo, T. Friithwirth, G. Palm (Eds.), KI
2004: Advances in Artificial Intelligence. XI, 467 pages.
2004. (Subseries LNAI).

Vol. 3236: M. Nifez, Z. Maamar, FL. Pelayo, K.
Pousttchi, F. Rubio (Eds.), Applying Formal Methods:
Testing, Performance, and M/E-Commerce. XI, 381
pages. 2004.

Vol. 3235: D. de Frutos-Escrig, M. Nunez (Eds.), For-
mal Techniques for Networked and Distributed Systems
- FORTE 2004. X, 377 pages. 2004.

Vol. 3234: M J. Egenhofer, C. Freksa, H.J. Miller (Eds.),
Geographic Information Science. VIII, 345 pages. 2004.

Vol. 3232: R. Heery, L. Lyon (Eds.), Research and Ad-
vanced Technology for Digital Libraries. XV, 528 pages.
2004.

Vol. 3231: H.-A. Jacobsen (Ed.), Middleware 2004. XV,
514 pages. 2004.

Vol. 3230: J.L. Vicedo, P. Martinez-Barco, R. Mufioz, M.
Saiz Noeda (Eds.), Advances in Natural Language Pro-
cessing. XII, 488 pages. 2004. (Subseries LNAI).

Vol. 3229: 1.1. Alferes, J. Leite (Eds.), Logics in Artificial
Intelligence. XIV, 744 pages. 2004. (Subseries LNAI).

Vol. 3226: M. Bouzeghoub, C. Goble, V. Kashyap, S.
Spaccapietra (Eds.), Semantics of a Networked World.
XIII, 326 pages. 2004.

Vol. 3225: K. Zhang, Y. Zheng (Eds.), Information Secu-
rity. XII, 442 pages. 2004.

Vol. 3224: E. Jonsson, A. Valdes, M. Almgren (Eds.), Re-
cent Advances in Intrusion Detection. XII, 315 pages.
2004.

Vol. 3223: K. Slind, A. Bunker, G. Gopalakrishnan (Eds.),
Theorem Proving in Higher Order Logics. VIII, 337 pages.
2004.

Vol. 3222: H. Jin, G.R. Gao, Z. Xu, H. Chen (Eds.), Net-
work and Parallel Computing. XX, 694 pages. 2004.

Vol. 3221: S. Albers, T. Radzik (Eds.), Algorithms — ESA
2004. XVIII, 836 pages. 2004.

Vol. 3220: J.C. Lester, R.M. Vicari, F. Paraguagu (Eds.),
Intelligent Tutoring Systems. XXI, 920 pages. 2004.

Vol. 3219: M. Heisel, P. Liggesmeyer, S. Wittmann (Eds.),
Computer Safety, Reliability, and Security. XI, 339 pages.
2004.

Vol. 3217: C. Barillot, D.R. Haynor, P. Hellier (Eds.), Med-
ical Image Computing and Computer-Assisted Interven-
tion — MICCAI 2004. XXXVIII, 1114 pages. 2004.

Vol. 3216: C. Barillot, D.R. Haynor, P. Hellier (Eds.), Med-
ical Image Computing and Computer-Assisted Interven-
tion — MICCAI 2004. XXXVIII, 930 pages. 2004.

Vol. 3215: M.G.. Negoita, R.J. Howlett, L.C. Jain (Eds.),
Knowledge-Based Intelligent Information and Engineer-
ing Systems. LVII, 906 pages. 2004. (Subseries LNAI).

Vol. 3214: M.G.. Negoita, R.J. Howlett, L.C. Jain (Eds.),
Knowledge-Based Intelligent Information and Engineer-
ing Systems. LVIII, 1302 pages. 2004. (Subseries LNAI).

Vol. 3213: M.G.. Negoita, R.J. Howlett, L.C. Jain (Eds.),
Knowledge-Based Intelligent Information and Engineer-
ing Systems. LVIII, 1280 pages. 2004. (Subseries LNAI).

Vol. 3212: A. Campilho, M. Kamel (Eds.), Image Analysis
and Recognition. XXIX, 862 pages. 2004.

Vol. 3211: A. Campilho, M. Kamel (Eds.), Image Analysis
and Recognition. XXIX, 880 pages. 2004.

Vol. 3210: J. Marcinkowski, A. Tarlecki (Eds.), Computer
Science Logic. XI, 520 pages. 2004.

Vol. 3209: B. Berendt, A. Hotho, D. Mladenic, M. van
Someren, M. Spiliopoulou, G. Stumme (Eds.), Web Min-
ing: From Web to Semantic Web. IX, 201 pages. 2004.
(Subseries LNAT).

Vol. 3208: H.J. Ohlbach, S. Schaffert (Eds.), Principles
and Practice of Semantic Web Reasoning. VII, 165 pages.
2004.

Vol. 3207: L.T. Yang, M. Guo, G.R. Gao, N.K. Jha (Eds.),
Embedded and Ubiquitous Computing. XX, 1116 pages.
2004.

Vol. 3206: P. Sojka, 1. Kopecek, K. Pala (Eds.), Text,
Speech and Dialogue. XIII, 667 pages. 2004. (Subseries
LNAI).

Vol. 3205: N. Davies, E. Mynatt, 1. Siio (Eds.), UbiComp
2004: Ubiquitous Computing. XVI, 452 pages. 2004.

Vol. 3204: C.A. Peiia Reyes, Coevolutionary Fuzzy Mod-
eling. XIII, 129 pages. 2004.
Vol. 3203: J. Becker, M. Platzner, S. Vernalde (Eds.), Field

Programmable Logic and Application. XXX, 1198 pages.
2004.

Vol. 3202: J.-F. Boulicaut, F. Esposito, F. Giannotti, D.
Pedreschi (Eds.). Knowledge Discovery in Databases:
PKDD 2004. XIX, 560 pages. 2004. (Subseries LNAI).

Vol. 3201: J.-F. Boulicaut, F. Esposito, F. Giannotti, D.
Pedreschi (Eds.), Machine Learning: ECML 2004. X VIII,
580 pages. 2004. (Subseries LNAI).

Vol. 3199: H. Schepers (Ed.), Software and Compilers for
Embedded Systems. X, 259 pages. 2004.

Table of Contents

Implementation of Functional Languages

1 Language Constructs and Programming

Lazy ASSEIbIONS ; o« s w6 o0smemo s o 8ime o a s /6.6 6o, 6 @i w6 066 @56 § 05w s w8 1
Olaf Chitil, Dan McNeill, and Colin Runciman

Interfacing Haskell with Object-Oriented Languages 20
André T.H. Pang and Manuel M.T. Chakravarty

A Functional Shell That Dynamically Combines Compiled Code 36
Arjen van Weelden and Rinus Plasmeijer

II Static Analysis and Types

Polymorphic Type Reconstruction Using Type Equations 53
Venkatesh Choppella

Correctness of Non-determinism Analyses
in a Parallel-Functional Language 69
Clara Segura and Ricardo Pena

Inferring Cost Equations for Recursive, Polymorphic
and Higher-Order Functional Programs 86
Pedro B. Vasconcelos and Kevin Hammond

III Paralelism

Dynamic Chunkingin Eden 102
Jost Berthold

With-Loop Scalarization — Merging Nested Array Operations 118
Clemens Grelck, Sven-Bodo Scholz, and Kai Trojahner

Building an Interface Between Eden and Maple:
A Way of Parallelizing Computer Algebra Algorithms 135
Rafael Martinez and Ricardo Peria

Generic Graphical User Interfaces, 152
Peter Achten, Marko van Eekelen, and Rinus Plasmeijer

Polytypic Programming in Haskell 168
Ulf Norell and Patrik Jansson

Author Index 185

Lazy Assertions

Olaf Chitil, Dan McNeill, and Colin Runciman

Department of Computer Science, The University of York, UK

Abstract. Assertions test expected properties of run-time values with-
out disrupting the normal working of a program. So in a lazy functional
language assertions should be lazy — not forcing evaluation, but only ex-
amining what is evaluated by other parts of the program. We explore the
subtle semantics of lazy assertions and describe sequential and concur-
rent variants of a method for checking lazy assertions. All variants are
implemented in Haskell.

1 Introduction

A programmer writing a section of code often has in mind certain assumptions
or intentions about the values involved. Some of these assumptions or intentions
are expressed in a way that can be verified by a compiler, for example as part of
a type system. Those beyond the expressive power of static types could perhaps
be proved separately as theorems, but such a demanding approach is rarely
taken. Instead of leaving key properties unexpressed and unchecked, a useful
and comparatively simple option is to express them as assertions — boolean-
valued expressions that the programmer assumes or intends will always be true.
Assertions are checked at run-time as they are encountered, and any failures are
reported. If no assertion fails, the program runs just as it would normally, apart
from the extra time and space needed for checking.

The usefulness of assertions in conventional state-based programming has
long been recognised, and many imperative programming systems include some
support for them. In these systems, each assertion is attached to a program point;
whenever control reaches that point the corresponding assertion is immediately
evaluated to a boolean result. Important special cases of program points with
assertions include points of entry to, or return from, a procedure.

In a functional language, the basic units of programs are expressions rather
than commands. The commonest form of expression is a function application. So
our first thought might be that an assertion in a functional language can simply
be attached to an expression: an assertion about arguments (or ‘inputs’) alone
can be checked before the expression is evaluated and an assertion involving
the result (or ‘output’) can be checked afterwards. But in a lazy language this
view is at odds with the need to preserve normal semantics. Arguments may
be unevaluated when the expression is entered, and may remain unevaluated or
only partially evaluated even after the expression has been reduced to a result.
The result itself may only be evaluated to weak head-normal form. So neither
arguments nor result can safely be the subjects of an arbitrary boolean assertion
that could demand their evaluation in full.

P. Trinder, G. Michaelson, and R. Pena (Eds.): IFL 2003, LNCS 3145, pp. 1-19, 2004.
(© Springer-Verlag Berlin Heidelberg 2004

2 Olaf Chitil, Dan McNeill, and Colin Runciman

How can assertions be introduced in a lazy functional language? How can we
satisfy our eagerness to evaluate assertions, so that failures can be caught as soon
as possible, without compromising the lazy evaluation order of the underlying
program to which assertions have been added? We aim to support assertions
by a small but sufficient library defined in the programming language itself.
This approach avoids the need to modify compilers or run-time systems and
gives the programmer a straightforward and familiar way of using a new facility.
Specifically, we shall be programming in Haskell[3].

The rest of the paper is organised as follows. Section 2 uses two examples
to illustrate the problem with eager assertions in a lazy language. Section 3
outlines and illustrates the contrasting nature of lazy assertions. Section 4 first
outlines an implementation of lazy assertions that postpones their evaluation
until the underlying program is finished; it then goes on to describe alternative
implementations in which each assertion is evaluated by a concurrent thread.
Section 5 uncovers a residual problem of sequential demand within assertions.
Section 6 gives a brief account of our early experience using lazy assertions in
application programs. Section 7 discusses related work. Section 8 concludes and
suggests future work.

2 Eager Assertions Must Be True

A library provided with the Glasgow Haskell compiler! already includes a func-
tion assert :: Bool -> a -> a. It is so defined that assert True x = x but
an application of assert False causes execution to halt with a suitable error
message. An application of assert always expresses an eager assertion because
it is a strict function: evaluation is driven by the need to reduce the boolean ar-
gument, and no other computation takes place until the value True is obtained.

Example: Sets as Ordered Trees
Consider the following datatype.

data Ord a => Set a = Empty
| Union (Set a) a (Set a)

Functions defined over sets include with and elem, where s ‘with’ x represents
sU{z} and x ‘elem’ s represents the membership test z € s.

with :: Ord a => Set a -> a -> Set a

Empty ‘with’ x = Union Empty x Empty

(Union s1 y s2) ‘with’ x = case compare x y of
LT -> Union (s1 ‘with’ x) y s2
EQ -> Union sl y s2
GT -> Union sl y (s2 ‘with’ x)

! http://www.haskell. org/ghc

Lazy Assertions 3

elem :: Ord a => a -> Set a -> Bool

x ‘elem’ Empty False

x ‘elem’ (Union sl y s2) = case compare x y of
LT -> x ‘elem’ si
EQ -> True
GT -> x ‘elem’ s2

The 0rd a qualification in the definition of Set and in the signatures for
with and elem only says that comparison operators are defined for the type a.
It does not guarantee that Set a values are strictly ordered trees, which is what
the programmer intends. To assert this property, we could define the following
predicate.

strictlyOrdered :: Ord a => Set a -> Bool

strictlyOrdered = soBetween Nothing Nothing
where
soBetween _ _
soBetween lo hi (Union s1 x s2)

Empty = True

between lo hi x &&
soBetween lo (Just x) si1 &&
soBetween (Just x) hi s2
between lo hi x = maybe True (< x) lo && maybe True (> x) hi

Something else the programmer intends is a connection between with and
elem. It can be expressed by asserting x ‘elem’ (s ‘with’ x). Combining this
property with the ordering assertion we might define:

s ‘checkedWith’ x = assert post s’
where
s)
pre
post

assert pre s ‘with’ x
strictlyOrdered s
strictlyOrdered s’ && x ‘elem’ s’

]

Observations. The eager assertions in checkedWith may ‘run ahead’ of evalu-
ation actually required by the underlying program, forcing fuller evaluation of
tree structures and elements. The strict-ordering test is a conjunction of two
comparisons for every internal node of a tree, forcing the entire tree to be eval-
uated (unless the test fails). Even the check involving elem forces the path from
the root to x.

Does this matter? Surely some extra evaluation is inevitable when non-trivial
assertions are introduced? It does matter. If assertion-checking forces evaluation
it could degenerate into a pre-emptive, non-terminating and unproductive pro-
cess. What if, for example, a computation involves the set of all integers, rep-
resented as in Figure 1?7 Functions such as elem and with still produce useful
results. But checkedWith eagerly carries the whole computation away on an
infinite side-track!

Even where eager assertions terminate they may consume time or space out
of proportion with normal computation. Also, assertions are often checked in the

4 Olaf Chitil, Dan McNeill, and Colin Runciman

0
N
-2 +2
/7 '\ /
-6 a4 41 +6
P ™
4 +4
/7 \ / N\
5 3 43 +5

Fig. 1. A tree representation of the infinite set of integers. Each integer 7 occurs at
a depth no greater than 2log,(abs(z) + 1). Differences between adjacent elements on
leftmost and rightmost paths are successive powers of two.

hope of shedding light on a program failure; it could be distracting to report a
failed assertion about values that are irrelevant as they were never needed by
the failing program.

3 Lazy Assertions Must Not Be False

So assertions should only examine those parts of their subject data structures
that are in any case demanded by the underlying program. Lazy assertions should
make a (provisional) assumption of validity about other data not (yet) evaluated.
Computation of the underlying program should proceed not only if an assertion
reduces to True, but also if it cannot (yet) be reduced to a value at all; the only
constraint is that an assertion must never reduce to False.

If we are to guard data structures that are the subjects of assertions from
over-evaluation, we cannot continue to allow arbitrary boolean expressions in-
volving these structures. We need to separate the predicate of the assertion from
the subject to which it is applied. An implementation of assertions should com-
bine the two using only a special evaluation-safe form of application. So the type
of assert becomes

assert :: (a -> Bool) -> a -> a

where assert p acts as a lazy partial identity.

Example Revisited

If we had an implementation of this lazy assert, how would it alter the ordered-
tree example? In view of the revised type of assert, the definition of
checkedWith must be altered slightly, making pre and post predicates rather
than booleans.

Lazy Assertions 5

1. main computation 2. assertion computations

assertion store

Fig. 2. Delayed Assertions in Time.

s ‘checkedWith’ x = assert post (assert pre s ‘with’ x)
where
pre = strictlyOrdered
post = \s’ -> strictlyOrdered s’ && x ‘elem’ s’

Now the computation of a checkedWith application proceeds more like a normal
application of with. Even if infinite sets are involved, the corresponding asser-
tions are only partially computed, up to the limits imposed by the finite needed
parts of these sets.

4 Implementation

Having established the benefits of lazy assertions we now turn to the question
of how they can be implemented in Haskell. We develop an assertion library in
steps: we start with a simple version, criticise it, and then refine it to the next
version.

4.1 Delayed Assertions

We have to ensure that the evaluation of the assertions cannot disturb the eval-
uation of the underlying program. A very simple idea for achieving this is to
evaluate all assertions after termination of the main computation.

Figure 2 illustrates the idea. The main computation only evaluates the un-
derlying program and collects all assertions in a global store. After termination
of the main computation assertions are taken from the store and evaluated one
after the other.

We are certain that lazy assertions cannot be implemented within pure
Haskell 98. In particular we need the function unsafePerformI0 :: I0 a -> a
to perform actions of the IO monad without giving assert a monadic type.
We aim to minimise the use of language extensions and restrict ourselves to
extensions supported by most Haskell systems. Our implementation is far more
concise and potentially portable than any modification of a compiler or run-time
system could be.

6 Olaf Chitil, Dan McNeill, and Colin Runciman

Which extensions do we need for delayed assertions? Extended exceptions
enable a program to catch all erroneous behaviour of a subcomputation. They
ensure that all assertions are evaluated, even if the main computation or any
other assertion evaluated earlier fails. A mutable variable of type IORef im-
plements the global assertion store. Finally unsafePerformIO :: I0 a -> a
enables us to implement assert using exceptions and mutable variables [7].

Properties of the Implementation. This simple implementation does not prevent
an assertion from evaluating a test argument further than the main computation
did. Because assertion checking is delayed, over-evaluation cannot disturb the
main computation, but it can cause run-time errors or non-termination in the
evaluation of an assertion (see Section 2).

4.2 Avoiding Over-Evaluating

To avoid over-evaluation do we need any non-portable “function” for testing if an
expression is evaluated? No, exceptions and the function unsafePerformIO are
enough. We can borrow and extend a technique from the Haskell Object Obser-
vation Debugger (HOOD) [4]. We arrange that as evaluation of the underlying
program demands the value of an expression wrapped with an assertion, the
main computation makes a copy of the value. Thus the copy comprises exactly
those parts of the value that were demanded by the evaluation of the underlying
program.

We introduce two new functions, demand and listen. The function demand
is wrapped around the value that is consumed by the main computation. The
function returns that value and, whenever a part of the value is demanded, the
function also adds the demanded part to the copy. The assertion uses the result
of the function listen. The function listen simply returns the copy; because
listen is only evaluated after the main computation has terminated, listen
returns those parts of the value that were demanded by the main computation.
If the result of listen is evaluated further, then it raises an exception. For
every part of a value there is a demand/listen pair that communicates via an
I0Ref. The value of the IORef is Unblocked v to pass a value v (weak head
normal form) or Blocked to indicate that the value was not (yet) demanded.
The implementation of demand is specific for every type. Hence we introduce a
class Assert and the type of assert becomes Assert a => String -> (a ->
Bool) -> a -> a. Appendix A gives the details of the implementation.

Properties of the Implementation. An assertion can use exactly those parts of
values that are evaluated by the main computation, no less, no more. However, if
an assertion fails, the programmer is informed rather late; because of the problem
actually detected by the assertion, the main computation may have run into a
run-time error or worse a loop. The computation is then also likely to produce a
long, fortunately ordered, list of failed assertions. A programmer wants to know
about a failed assertion before the main computation uses the faulty value!

Lazy Assertions 7

main I N . .
computation : : :
i :

L .

assertion —_— :
computations :
i

Fig. 3. Concurrent Assertions in Time.

4.3 Concurrent Assertions

How can we evaluate assertions as eagerly as possible yet still only using data that
is demanded by the main computation? Rather than delaying assertion checking
to the end, we can evaluate each assertion in a separate thread concurrently to
the main computation. We require a further extension of Haskell 98: Concurrent
Haskell [7].

Figure 3 illustrates the idea. Each evaluation of assert in the main com-
putation starts a new thread for evaluating the assertion itself. As before, the
value tested by an assertion is copied as it is demanded by the main compu-
tation and the copy is used by the assertion. Replacing the IOVar shared by
a demand/listen pair by an MVar synchronises the assertion thread with the
demand of the main computation. The assertion thread has to wait when it tries
to evaluate parts of the copy that do not (yet) exist.

Properties of the Implementation. Concurrency ensures that even if the main
computation runs into an infinite loop, a failed assertion will be reported. In
general failed assertions may be reported earlier. However, there is no guarantee,
because the scheduler is free to evaluate assertions at any time. They may — and
in practice often are — evaluated after the main computation has terminated.

4.4 Priority of Assertions

To solve the problem we need to give assertion threads priority over the main
computation. Unfortunately Concurrent Haskell does not provide threads with
different priorities. However, coroutining enables us to give priority to assertions.
We explicitly pass control between each assertion thread and the main thread.
When an assertion demands a part of a value that has not yet been demanded
by the main computation, the assertion thread is blocked and control is passed
to the main thread. Whenever the main thread demands another part of the
tested value and an assertion thread is waiting for that value, the main thread
is blocked and control is passed to the assertion thread. Thus the assertion
always gets a new part of the value for testing before it is used by the main
computation. Figure 4 illustrates the idea and Appendix B gives the details of
the implementation which uses semaphores to pass control.

