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Preface

Functional programming has a long history, reaching back through early realisa-
tions in languages like LISP to foundational theories of Computing, in particular
A-calculus and recursive function theory. In turn, functional programming has
had wide influence in Computing, both through developments within the disci-
pline, such as formal semantics, polymorphic type checking, lazy evaluation and
structural proof, and as a practical embodiment of formalised approaches, such
as specification, transformation and partial application.

One of the engaging features of functional programming is precisely the
crossover between theory and practice. In particular, it is regarded as essen-
tial that all aspects of functional programming are appropriately formalised,
especially the specification and implementation of functional languages. Thus,
specialist functional programming events like the International Workshop on
the Implementation of Functional Languages (IFL) attract contributions where
strong use is made of syntactic, semantic and meta-mathematical formalisms to
motivate, justify and underpin very practical software systems.

IFL grew out of smaller workshops aimed at practitioners wrestling with
the nuts and bolts of making concrete implementations of highly abstract lan-
guages. Functional programming has always been bedeviled by an unwarranted
reputation for slow and inefficient implementations. IFL is one venue where such
problems are tackled head on, always using formal techniques to justify practical
implementations.

The 15th International Workshop on the Implementation of Functional Lan-
guages (IFL’03) was held in Edinburgh, Scotland from the 8th to the 11th of
September, 2003. 42 people attended the Workshop, with participants from Aus-
tralia, Germany, Holland, Hungary, Ireland, Russia, Spain, Sweden and the USA,
as well as from the UK.

There were 32 presentations at IFL’03, in streams on Testing, Compila-
tion and Implementation, Applications, Language Constructs and Programming,
Types and Program Analysis, Concurrency and Parallelism, and Language In-
terfacing. 28 papers were submitted for the draft proceedings. After refereeing,
12 papers were selected for publication in these proceedings, an acceptance rate
of 42%.

The Programme Committee was pleased to award the 2nd Peter Landin Prize
for the best IFL paper to Pedro Vasconcelos, first author of Inferring Costs for
Recursive, Polymorphic and Higher-Order Functional Programs®.

The 16th International Workshop on the Implementation and Application of
Functional Languages will be held in Liibeck, Germany in September 2004. For
further details, please see: http://www.isp.uni-luebeck.de/if104/index.htm.

! Co-author Kevin Hammond honourably declined to share the prize as he was asso-
ciated with its establishment.
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Lazy Assertions

Olaf Chitil, Dan McNeill, and Colin Runciman

Department of Computer Science, The University of York, UK

Abstract. Assertions test expected properties of run-time values with-
out disrupting the normal working of a program. So in a lazy functional
language assertions should be lazy — not forcing evaluation, but only ex-
amining what is evaluated by other parts of the program. We explore the
subtle semantics of lazy assertions and describe sequential and concur-
rent variants of a method for checking lazy assertions. All variants are
implemented in Haskell.

1 Introduction

A programmer writing a section of code often has in mind certain assumptions
or intentions about the values involved. Some of these assumptions or intentions
are expressed in a way that can be verified by a compiler, for example as part of
a type system. Those beyond the expressive power of static types could perhaps
be proved separately as theorems, but such a demanding approach is rarely
taken. Instead of leaving key properties unexpressed and unchecked, a useful
and comparatively simple option is to express them as assertions — boolean-
valued expressions that the programmer assumes or intends will always be true.
Assertions are checked at run-time as they are encountered, and any failures are
reported. If no assertion fails, the program runs just as it would normally, apart
from the extra time and space needed for checking.

The usefulness of assertions in conventional state-based programming has
long been recognised, and many imperative programming systems include some
support for them. In these systems, each assertion is attached to a program point;
whenever control reaches that point the corresponding assertion is immediately
evaluated to a boolean result. Important special cases of program points with
assertions include points of entry to, or return from, a procedure.

In a functional language, the basic units of programs are expressions rather
than commands. The commonest form of expression is a function application. So
our first thought might be that an assertion in a functional language can simply
be attached to an expression: an assertion about arguments (or ‘inputs’) alone
can be checked before the expression is evaluated and an assertion involving
the result (or ‘output’) can be checked afterwards. But in a lazy language this
view is at odds with the need to preserve normal semantics. Arguments may
be unevaluated when the expression is entered, and may remain unevaluated or
only partially evaluated even after the expression has been reduced to a result.
The result itself may only be evaluated to weak head-normal form. So neither
arguments nor result can safely be the subjects of an arbitrary boolean assertion
that could demand their evaluation in full.

P. Trinder, G. Michaelson, and R. Pena (Eds.): IFL 2003, LNCS 3145, pp. 1-19, 2004.
(© Springer-Verlag Berlin Heidelberg 2004



2 Olaf Chitil, Dan McNeill, and Colin Runciman

How can assertions be introduced in a lazy functional language? How can we
satisfy our eagerness to evaluate assertions, so that failures can be caught as soon
as possible, without compromising the lazy evaluation order of the underlying
program to which assertions have been added? We aim to support assertions
by a small but sufficient library defined in the programming language itself.
This approach avoids the need to modify compilers or run-time systems and
gives the programmer a straightforward and familiar way of using a new facility.
Specifically, we shall be programming in Haskell[3].

The rest of the paper is organised as follows. Section 2 uses two examples
to illustrate the problem with eager assertions in a lazy language. Section 3
outlines and illustrates the contrasting nature of lazy assertions. Section 4 first
outlines an implementation of lazy assertions that postpones their evaluation
until the underlying program is finished; it then goes on to describe alternative
implementations in which each assertion is evaluated by a concurrent thread.
Section 5 uncovers a residual problem of sequential demand within assertions.
Section 6 gives a brief account of our early experience using lazy assertions in
application programs. Section 7 discusses related work. Section 8 concludes and
suggests future work.

2 Eager Assertions Must Be True

A library provided with the Glasgow Haskell compiler! already includes a func-
tion assert :: Bool -> a -> a. It is so defined that assert True x = x but
an application of assert False causes execution to halt with a suitable error
message. An application of assert always expresses an eager assertion because
it is a strict function: evaluation is driven by the need to reduce the boolean ar-
gument, and no other computation takes place until the value True is obtained.

Example: Sets as Ordered Trees
Consider the following datatype.

data Ord a => Set a = Empty
| Union (Set a) a (Set a)

Functions defined over sets include with and elem, where s ‘with’ x represents
sU{z} and x ‘elem’ s represents the membership test z € s.

with :: Ord a => Set a -> a -> Set a

Empty ‘with’ x = Union Empty x Empty

(Union s1 y s2) ‘with’ x = case compare x y of
LT -> Union (s1 ‘with’ x) y s2
EQ -> Union sl y s2
GT -> Union sl y (s2 ‘with’ x)

! http://www.haskell. org/ghc
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elem :: Ord a => a -> Set a -> Bool

x ‘elem’ Empty False

x ‘elem’ (Union sl y s2) = case compare x y of
LT -> x ‘elem’ si
EQ -> True
GT -> x ‘elem’ s2

The 0rd a qualification in the definition of Set and in the signatures for
with and elem only says that comparison operators are defined for the type a.
It does not guarantee that Set a values are strictly ordered trees, which is what
the programmer intends. To assert this property, we could define the following
predicate.

strictlyOrdered :: Ord a => Set a -> Bool

strictlyOrdered = soBetween Nothing Nothing
where
soBetween _ _
soBetween lo hi (Union s1 x s2)

Empty = True

between lo hi x &&
soBetween lo (Just x) si1 &&
soBetween (Just x) hi s2
between lo hi x = maybe True (< x) lo && maybe True (> x) hi

Something else the programmer intends is a connection between with and
elem. It can be expressed by asserting x ‘elem’ (s ‘with’ x). Combining this
property with the ordering assertion we might define:

s ‘checkedWith’ x = assert post s’
where
s)
pre
post

assert pre s ‘with’ x
strictlyOrdered s
strictlyOrdered s’ && x ‘elem’ s’

]

Observations. The eager assertions in checkedWith may ‘run ahead’ of evalu-
ation actually required by the underlying program, forcing fuller evaluation of
tree structures and elements. The strict-ordering test is a conjunction of two
comparisons for every internal node of a tree, forcing the entire tree to be eval-
uated (unless the test fails). Even the check involving elem forces the path from
the root to x.

Does this matter? Surely some extra evaluation is inevitable when non-trivial
assertions are introduced? It does matter. If assertion-checking forces evaluation
it could degenerate into a pre-emptive, non-terminating and unproductive pro-
cess. What if, for example, a computation involves the set of all integers, rep-
resented as in Figure 1?7 Functions such as elem and with still produce useful
results. But checkedWith eagerly carries the whole computation away on an
infinite side-track!

Even where eager assertions terminate they may consume time or space out
of proportion with normal computation. Also, assertions are often checked in the
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Fig. 1. A tree representation of the infinite set of integers. Each integer 7 occurs at
a depth no greater than 2log,(abs(z) + 1). Differences between adjacent elements on
leftmost and rightmost paths are successive powers of two.

hope of shedding light on a program failure; it could be distracting to report a
failed assertion about values that are irrelevant as they were never needed by
the failing program.

3 Lazy Assertions Must Not Be False

So assertions should only examine those parts of their subject data structures
that are in any case demanded by the underlying program. Lazy assertions should
make a (provisional) assumption of validity about other data not (yet) evaluated.
Computation of the underlying program should proceed not only if an assertion
reduces to True, but also if it cannot (yet) be reduced to a value at all; the only
constraint is that an assertion must never reduce to False.

If we are to guard data structures that are the subjects of assertions from
over-evaluation, we cannot continue to allow arbitrary boolean expressions in-
volving these structures. We need to separate the predicate of the assertion from
the subject to which it is applied. An implementation of assertions should com-
bine the two using only a special evaluation-safe form of application. So the type
of assert becomes

assert :: (a -> Bool) -> a -> a

where assert p acts as a lazy partial identity.

Example Revisited

If we had an implementation of this lazy assert, how would it alter the ordered-
tree example? In view of the revised type of assert, the definition of
checkedWith must be altered slightly, making pre and post predicates rather
than booleans.
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Fig. 2. Delayed Assertions in Time.

s ‘checkedWith’ x = assert post (assert pre s ‘with’ x)
where
pre = strictlyOrdered
post = \s’ -> strictlyOrdered s’ && x ‘elem’ s’

Now the computation of a checkedWith application proceeds more like a normal
application of with. Even if infinite sets are involved, the corresponding asser-
tions are only partially computed, up to the limits imposed by the finite needed
parts of these sets.

4 Implementation

Having established the benefits of lazy assertions we now turn to the question
of how they can be implemented in Haskell. We develop an assertion library in
steps: we start with a simple version, criticise it, and then refine it to the next
version.

4.1 Delayed Assertions

We have to ensure that the evaluation of the assertions cannot disturb the eval-
uation of the underlying program. A very simple idea for achieving this is to
evaluate all assertions after termination of the main computation.

Figure 2 illustrates the idea. The main computation only evaluates the un-
derlying program and collects all assertions in a global store. After termination
of the main computation assertions are taken from the store and evaluated one
after the other.

We are certain that lazy assertions cannot be implemented within pure
Haskell 98. In particular we need the function unsafePerformI0 :: I0 a -> a
to perform actions of the IO monad without giving assert a monadic type.
We aim to minimise the use of language extensions and restrict ourselves to
extensions supported by most Haskell systems. Our implementation is far more
concise and potentially portable than any modification of a compiler or run-time
system could be.
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Which extensions do we need for delayed assertions? Extended exceptions
enable a program to catch all erroneous behaviour of a subcomputation. They
ensure that all assertions are evaluated, even if the main computation or any
other assertion evaluated earlier fails. A mutable variable of type IORef im-
plements the global assertion store. Finally unsafePerformIO :: I0 a -> a
enables us to implement assert using exceptions and mutable variables [7].

Properties of the Implementation. This simple implementation does not prevent
an assertion from evaluating a test argument further than the main computation
did. Because assertion checking is delayed, over-evaluation cannot disturb the
main computation, but it can cause run-time errors or non-termination in the
evaluation of an assertion (see Section 2).

4.2 Avoiding Over-Evaluating

To avoid over-evaluation do we need any non-portable “function” for testing if an
expression is evaluated? No, exceptions and the function unsafePerformIO are
enough. We can borrow and extend a technique from the Haskell Object Obser-
vation Debugger (HOOD) [4]. We arrange that as evaluation of the underlying
program demands the value of an expression wrapped with an assertion, the
main computation makes a copy of the value. Thus the copy comprises exactly
those parts of the value that were demanded by the evaluation of the underlying
program.

We introduce two new functions, demand and listen. The function demand
is wrapped around the value that is consumed by the main computation. The
function returns that value and, whenever a part of the value is demanded, the
function also adds the demanded part to the copy. The assertion uses the result
of the function listen. The function listen simply returns the copy; because
listen is only evaluated after the main computation has terminated, listen
returns those parts of the value that were demanded by the main computation.
If the result of listen is evaluated further, then it raises an exception. For
every part of a value there is a demand/listen pair that communicates via an
I0Ref. The value of the IORef is Unblocked v to pass a value v (weak head
normal form) or Blocked to indicate that the value was not (yet) demanded.
The implementation of demand is specific for every type. Hence we introduce a
class Assert and the type of assert becomes Assert a => String -> (a ->
Bool) -> a -> a. Appendix A gives the details of the implementation.

Properties of the Implementation. An assertion can use exactly those parts of
values that are evaluated by the main computation, no less, no more. However, if
an assertion fails, the programmer is informed rather late; because of the problem
actually detected by the assertion, the main computation may have run into a
run-time error or worse a loop. The computation is then also likely to produce a
long, fortunately ordered, list of failed assertions. A programmer wants to know
about a failed assertion before the main computation uses the faulty value!
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Fig. 3. Concurrent Assertions in Time.

4.3 Concurrent Assertions

How can we evaluate assertions as eagerly as possible yet still only using data that
is demanded by the main computation? Rather than delaying assertion checking
to the end, we can evaluate each assertion in a separate thread concurrently to
the main computation. We require a further extension of Haskell 98: Concurrent
Haskell [7].

Figure 3 illustrates the idea. Each evaluation of assert in the main com-
putation starts a new thread for evaluating the assertion itself. As before, the
value tested by an assertion is copied as it is demanded by the main compu-
tation and the copy is used by the assertion. Replacing the IOVar shared by
a demand/listen pair by an MVar synchronises the assertion thread with the
demand of the main computation. The assertion thread has to wait when it tries
to evaluate parts of the copy that do not (yet) exist.

Properties of the Implementation. Concurrency ensures that even if the main
computation runs into an infinite loop, a failed assertion will be reported. In
general failed assertions may be reported earlier. However, there is no guarantee,
because the scheduler is free to evaluate assertions at any time. They may — and
in practice often are — evaluated after the main computation has terminated.

4.4 Priority of Assertions

To solve the problem we need to give assertion threads priority over the main
computation. Unfortunately Concurrent Haskell does not provide threads with
different priorities. However, coroutining enables us to give priority to assertions.
We explicitly pass control between each assertion thread and the main thread.
When an assertion demands a part of a value that has not yet been demanded
by the main computation, the assertion thread is blocked and control is passed
to the main thread. Whenever the main thread demands another part of the
tested value and an assertion thread is waiting for that value, the main thread
is blocked and control is passed to the assertion thread. Thus the assertion
always gets a new part of the value for testing before it is used by the main
computation. Figure 4 illustrates the idea and Appendix B gives the details of
the implementation which uses semaphores to pass control.



