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Preface

This book grew out of lectures given at the University of Maryland in
1979/1980. The purpose was to give a treatment of p-adic L-functions and
cyclotomic fields, including Iwasawa’s theory of Z -extensions, which was
accessible to mathematicians of varying backgrounds.

The reader is assumed to have had at least one semester of algebraic
number theory (though one of my students took such a course concurrently).
In particular, the following terms should be far:-iliar: Dedekind domain,
class number, discriminant, units, ramification, local field. Occasionally one
needs the fact that ramification can be computed locally. However, one who
has a good background in algebra should be able to survive by talking to the
local algebraic number theorist. I have not assumed class field theory; the
basic facts are summarized in an appendix. For most of the book, one only
needs the fact that the Galois group of the maximal unramified abelian
extension is isomorphic to the ideal class group, and variants of this statement.

The chapters are intended to be read consecutively, but it should be
possible to vary the order consider:.bly. The first four chapters are basic.
After that, the reader willing to believe occasional facts could probably read
the remaining chapters randomly. For example, the reader might skip directly
to Chapter 13 to learn about Z,-extensions. The last chapter, on the
Kronecker-Weber theorem, can be read after Chapter 2.

The notations used in the book are fairly standard; Z, Q, Z,, and Q,
denote the integers, the rationals, the p-adic integers, and the p-adic rationals,
respectively. If 4 is a ring (commutative with identity), then 4 * denotes its
group of units. At Serge Lang’s urging I have let the first Bernoulli number
be B, = — % rather than +1. This disagrees with Iwasawa [23] and several
of my papers, but conforms to what is becoming standard usage.
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viii ; Preface

Throughout the preparation of this book I have found Serge Lang’s two
volumes on cyclotomic fields very helpful. The reader is urged to look at
them for different viewpoints on several of the topics discussed in the present
* volume and for a different selection of topics. The second half of his second

volume gives a nice self-ccntained (independent of the remaining one and a
half volumes) proof of it e Gross K oblitz relation between Gauss sums and
the p-adic gamma function, and the related formula of Ferrero and Green-
berg for the derivative of the p-adic L-function at 0, neither of which I have in-
cluded here. T have also omitted a cliscussion of explicit reciprocity laws. For
these the reader can consult Lang [47], Hasse [2], Henniart, Ireland—-Rosen,
Tate [3], or Wiles [1].

Perhaps it is worthwhile to give a very brief history of cyclotomic fields.
The subject got its real start in the 1840s and 1850s with'Kummer’s work on
Fermat’s Last Theorem and reciprocity laws. The basic foundations laid
by Kummer remained the main part of the theory for around a century.
Then in 1958, Iwasawa introduced his theory of Z -extensions, and a few
years later Kubota and Leopoldt invented p-adic L-functions. In a major
paper (Iwasawa [18]), Iwasawa interpreted these p-adic L-functions in
terms of Z -extensions. In 1979, Mazur and Wiles proved the Main Conjec-
‘ture, showing that p-adic L-functions are essentially the characteristic power
series of certain Galois actions arising in the theory of Z ,-extensions.

What remains ? Most of the universally accepted conjectures, in particular
those derived from analogy with function fields, have been proved, at least
for abelian extensions of Q. Many of the conjectures that remain are prob-
ably better classified as “open questions,” since the evidence for them is not
very overwhelming, and there do not seem to be any compelling reasons to
believe or not to believe them. The most notable are Vandiver’s conjecture,
the weaker statement that the p-Sylow subgroup of the ideal class group of the
pth cyclotomic field is cyclic over the group ring of the Galois group, and the
question of whether or not 4 = 0 for totally real fields. In other words, we
know a lot about imaginary things, but it is not clear what to expect in the
real case. Whether or not there exists a fruitful theory remains to be seen.

Other possible directions for future developments could be a theory of
Z-extensions (7 = [12,; some progress has recently been made by Friedman
[1]), and the analogues of Iwasawa’s theory in the elliptic case (Coates-Wiles
[4D. '

I would like to thank Gary Cornell for much help and many excellent
suggestions during the writing of this book. I would also like to thank Joha
Coates for many helpful conversations concerning Chapter 13. This chapter
also profited greatly from the beautiful courses of my teacher, Kenkichi
Iwasawa, at Princeton University. Finally, I would like to thank N.S.F. and
the Sloan Foundation for their financial support and L.H.ES. and the
University of Maryland for their academic support during the writing of this
book.
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Chapter 1
Fermat’s Last Theorem

We start with a special case of Fermat’s Last Theorem, since not only was it
the motivation for much work on cyclotomic fields but also it provides a
sampling of the various topics we shall discuss later.

Theorem 1.1. Suppose p is an odd prime and p does not divide the class number
of the field Q((,), where . is a primitive pth root of unity. Then

xP + y? = 2P, (xyz,p) =1
has no solutions in rational integers.

Remark. The case where p does not divide x, y, and 7 is called the first case
of Fermat’s Last Theorem, and is in general casier to treat than the second
case, where p divides one of x, y, z. We shall pro e the above theorem in the
second case later, again with the assumption on the class number.

Factoring the above equation as

p—1 }
[1Ge+ Gy = 2%
i=0

we find we are naturally led to consider the ring Z[’,). We first need some
basic results on this ring. Throughout the remainder of this chapter, we
let{ = ¢,.

. z ¥ \
Proposition 1.2. Z[(] is the ring of algebraic inicgers in the field Q({). T herefore
Z[(] is a Dedekind domain (so we have unique factorization into prime ideals,
etc.).



5 i 1 Fermat’s Last Theorem

PRrOOF. Let ¢ denote the algebraic integers of Q((). Clearly Z[{] < 0. We
must show the reverse inclusior.

Lemma 1.3. Suppose r and s are integers with (p,rs) = 1. Then ({" — 1)/
(8 — 1) is a unit of Z[(].

PROOF. Writing r = st (mod p} (or some t, we have

fothes 10 ol O+ POV e 70

gs__lhcs.__'

Similarly, ({° — l‘)/(C' — 1) € 71.[]. This completes the proof of the lemma. [J

Remark. The units of Lemma ! 3 are called cyclotomic units and will be of
great importance in later chanters.

Lemma 1.4. The ideal (1 — ) is a prime ideal of O and (1 — ()" ! = (p).
Therefore p is totally ramified in Q).
PROOF. Since X” ' + XP72 ¢ .. 4+ X + 1= [Jo0 (X = ), welet X =1

to obtain p = [ (1 — {). From Lemma 1.3, we have the equality of ideals
(1 =0 = (1 — (. Therefore {p) = (1 ~ (). Since (p) can have at most
p — 1 = deg(Q({)/Q) prime factors in Q((), it follows that (1 — {) must be a
prime ideal of @. Alternatively, if (1 — {) = 4-B, then p = N1 —{) =
NA - NB so cither NA = 1 or NB = 1. Therefore the ideal (1 — {) does not
factor in €. O

We now return to the proo! of Proposition 1.2. Let v denote the valuation
corresponding to the ideal (! — {), so v(1 — ) =1 and v(p) = p — 1, for
example. Since Q({) = Q(I ~ (), we have that {I,1 - (1 —-0?3...,
(I — {)P~ 2} is a basis for Q({) as a vector space over Q. Let a € @. Then

a=ag+a(l =0+ +a,,(1 —0PF %

with a; € Q. We want to show a; € Z. Since v(a) = 0 (mod p — 1) forae Q,
the numbers v(a{1 — {)),0 < i < p — 2, aredistinct (mod p — 1), hence are
distinct. Therefore, by standard facts on non-archimedean valuations,
v(e) = min(uv(a(1 — )Y). Since o(e) > 0 and (1 — 0)’) < p — 1, we must
have v(a;) > 0. Therefore p is not in the denominator of any a;. Rearrange the
expression for « to obtain

a=bo+ b+ +b, 72

with b; € @, but no b; has p in the denominator.
The proof may now be completed by observing that the discriminant of the
basis {1, {,.. ., (" %} is a power of p. More explicitly, we have

o =bg + by{" + o+ b, ()2



1 Fermat’s Last Theorem

where o runs through Gal(Q(0)/Q) =~ (Z/pZ7)™. Let o; = o”, where 6: (= &
Then we have

“ «d
Era bl
oy 1 :: vd b()
e - S &
3 B - vh 3
] \j < h
ap 1 ¥ Pz

But the determinant of the matrix is a Vandermonde determinant, so it is
equal to
I1 & — {9y = (unit)(power of | — ).
1 Sisk<p=i

Therefore b, = (algebraic integer)/(power of 1 = (). Since h; has no p in the
denominator, we must have b, = algebraic integer; therefore b, € Z, so we
are done. g

Alternatively, we could finish the proof as follows. Since (™ 'x is.an
algebraic integer, its trace from Q(J) to @ is a rational Inlngcr Tr(k x)e Z.
Now the minimal polynomial for PG AR T URMRINER
X+ 1,50 Tr({) = —1. We'obtain'

[l"-
pbi = Y by =(p- )b, — N b SR @) e

j=0 i

Using' this equation for i =0 and i =i and subtracting. we obtain
p(by — b)) € Z, therefore by — b; € Z. It remains to show by € Z. Wrile

& = ol + 45 [Py by — o)l + - S (Byry =ih)(R P
By the above, the expression in brackets is an algebraic integer. Therefore
P by = bo(l + T+ -+ + (P ety

so by € O n Q = Z. Therefore b, € Z for all i. so again we are done. This
finishes the proof of Proposition 1.2. : L

Before proceeding to the proof of Theorem 1.1, we need the following
result, which will be discussed in more detail later,

Proposition 1.5. Let ¢ be a unit of Z[C,]. Then thereexist &€ QU + & N and
r € Z such ihat ¢ = ("¢;.

Remark. Take any embedding of @({) into the complex numbers. Complex
conjugation acts as an automorphism sending ¢ to ¢ ' The fixed ficld is
QE + Y = Q(cos(2n/p)) and is called the maximal real subfield of W(C).
The proposition says that any unit of Z[ (] may be written as a root ul unity
timies a real unit. This result is plausible since the field O( + ') has
(p — 1)/2 real embeddings and no complex embeddings into C, while ()
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has no real embeddings and (z — 1)/2 pairs of complex embeddings. There-
fore the Z-rank of the unit groups of each field is (p — 3)/2, so the units of
Q( + ¢ Y)areoffiniteindex in those of Q((). However, it does not appear that
Dirichlet’s unit theorem can be used to prove the proposition.

PROOF OF PROPOSITION 1.5. Let o« = ¢/z. Then a is an algebraic integer since
€is a unit. Also, all conjugates of « have absolute value 1 (this follows easily
from the fact that complex conjugation commutes with the other elements of
the Galois group).

We now need a lemma.

Lemma 1.6. If « is an algebraic integer all of whose conjugates have absolute
value 1, then o is a root of unity.

ProOF. The coefficients of the irreducible polynomials for all powers of «
are rational integers which can be given bounds depending only on the degree
of o over Q. It follows that there are only finitely many irreducible poly-
nomials which can have a power of « as a root. Therefore there are only
finitely many distinct powers of a. The lemma follows. (]

Remark. The assumptlon that « is an algebraic integer is essential, as the
example « = 2 + %i shows. Also we note that it is actually possible for an
algebraic integer to have absolute value 1 while some of its conjugates do not.

An example is a = \/2 - \/5 + t\/ﬁ — 1. One conjugate may be ob-

tained by mapping \/5 to —-\/é which ylelds \/2 +- \/5 it \/\/— 2 + 1,
neither of which have absolute value 1. However, if Q(x) is abelian over @
then all automorphisms commute with complex conjugation; so if ag = 1
then a’a® = 1 for all a.

Returning to the proof of Proposition 1.5, we find that ¢/; is a root of
unity, therefore ¢/&¢ = +{° for some a (the only roots of unity in Q({) are of
this form. This will follow from results in the next chapter).

Suppose first that ¢/ = —(°. Write &=bo + by + -+ + b,_,{?"2.
Then ¢ = bo +by+---+b,_;(modl ~¢).Alsog=by +bl '+ ...=
bo+by+ - ¥ b, ,=e= —{%= —& Therefore 2 = 0 (mod 1 — {). But
2¢(1 — C) Since (1 —{) is a prinie jdeal, &€ (1 — {), which is impossible
smce &1s a unit. ]

Therefore g/é = +C" Let 2r 2 a (mod p), and let &, = {""c. Then ¢ =
{"e;, and &; = ¢,. This proves Proposition 1.5. : O

PROOF OF THEOREM 1.1. We first treat the case p = 3. If 3kx thenod =
+1 (mod 9) and similarly for y and Z; Therefore'x +y?=—=2,0,0r +2
(mod 9) but z° = +1. Therefore x* + y* # z3. SimilArly, we may treat the’
case p = 5 by consxdermg congruences mod 25. However, wa must stop at

\J



1 Fermat’s Last Theorem

p = 7 since 17 + 307 = 317 (mod 49). In fact there are still solutions if we
consider congruences to higher powers of 7 (see the Exercises). So we need
a new method.

Assume p > 5 and suppose x? + y* = zP, p f xyz. Suppose x = y = —z
(mod p). Then —2zP = zP, which is impossible since p ./ 3z. Therefore we may
rewrite the equation if necessary (as x? + (—z)? = (—y)f) to obtain x # y
(mod p). We shall need this assumption later on. Also we may assume X, ,
and z are relatively prime, otherwise divide by the greatest common divisor.

Lemma 1.7. The ideals (x + ('y), i=0, 1, ..., p— 1, are pairwise relatively
prime.

PROOF. Suppose 2 is a prime ideal with 2|(x + ('y) and 2|(x + {’y), where
i # j. Then 2|(l'y — {y) = (unit)(1 — {)y. Therefore 2 = (1 — {) or 2|y.
Similarly, 2 divides {i(x + {'y) — {i(x + {y) = (unit)(1 — Ox, so 2 =
(1 = Oor2|x. If 2 # (1 — {) then 2|x and 2|y, which is impossible since
(x, y) = 1. Therefore 2 = (1 — {).Butthenx + y = x + {'y = 0 mod 2, the
second congruence being by the choice of 2. Since x + y € Z, we have
X + y =0 (mod p). But z# = x? + y? = x + y = 0 (mod p), 50 p|z, contra-
diction. The lemma is proved.

Leryma 1.8. Let o € Z[(]. Then o is congruent mod p to a rational integer
(note this congruence is mod p, so it is much stronger than a congruence
mod 1 — ().

PROOF. Let a = by + byl + -+ + b,_,(?7 2 Then af = b§ + (b,0)P + ---

+ (b,-,(P" %P = bf + bf + - + b}, (mod p), which proves the lemma.
O

Lemma 1.9. Suppose o = ag + a;{ + +++ + a,— {7~ with a;€Z and -at
least one a; = 0. If n € Z and n divides x then n divides each a;.

PROOF. Since 1 + { + ---+(? ' =0, we may use any subset of
{1,¢,...,¢7" 1} with p — 2 elements as a basis of the Z-module Z[{]. Since
at least one a; = 0, the other a;s give the coefficients with respect to a basis.

The result follows. O

We may now finish the proof of Theorem 1.1. Consider the equation
p—1 {
[T+ =@y
i=0

as an equality of ideals. Since the ideals (x + ('y), 0 < i < p — 1, are pair-
wise relatively prime by Lemma 1.7, each one must be the pth power of an
ideal: :

(x + C'y) = Ak
Note that A? is principal.
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Now comes the-big step: since the class number of Q({) is assumed to be
not divisible by p, the ideal A; must be principal, say 4; = (=;). Consequently
(x + {'y) = (@F)as0 x + {'y = (unit) - o. We note that this is exactly the
same as we could have obtained under the stronger assumption that Z[{]
has unique factorization, rather than just class number prime to p.

Let i =1 and omit the subscripts, so x + {y = ea” for some unit &.
Proposition 1.5 says that ¢ = ("¢; for some integer r and where &; = ¢,.
Lemma 1.8 says that there is a rational integer a such that «” = a (mod p).
Therefore x + (y = ('e,0f = {"gya(mod p). Also x + {7'y = "g,@ =
{""eya (mod p) = { "¢,a (mod p) since @ = a and p = p. We obtain -

x4+ 8y) = U(x + ¢ 'y)(mod p)

or
N Ly = Prx = 7y = 0 (mod p). (%)

If 1, ¢, £, (3! are distinct, then (since p > 5) Lemma 1.9 says that p
divides x and y, which is contrary to our original assumptions. Therefore,
they are not distinct. Since 1 # { and (" # (>~ !, we have three cases:

(I) 1 =(¢*. We have from () that x + {y — x — {~ 'y = 0 (mod p), so,
{y — {?7 'y = 0 (mod p)-Lemma 1.9 implies that y = 0 (mod p), contra-
diction. :

(2) 1 = {1 or, equivalently, { = (*". Equation (*) becomes

() — (x.— ¥). = 0 (mod p).

Lemma 1.9 implics x — y = 0 (mod p), which contradicts the choice of
x and y made at the beginning of the proof.
(3) { = {*" 7' Equation (%) becomes i

x — {*x = 0 (mod p),

so x = 0 (mod p), contradiction. The proof of Theorem 1.1 is now
complete. O

Remarks. (Proofs for the following statements will appear in later chapters).
The obvious question now arises: How can one determine whether or not p
divides the class number of @({)? Kummer answered this question quite
nicely. Define the Bernoulli numbers B, by the formula ’

(for example, B, = |, B, = —%, B, =% B; = 0 and in fact B, ,, = 0 for
k=1, By = —35 Bs =435 By = — 35 Bio =56, Bi2 = —3730)- Then p
divides the class number of @Q({) if and only if p divides the numerator of



Exercises

some B,, k = 2,4,6,...,p — 3. For example, 691 divides the numerator of
"By, 50 691 divides the class number of Q({go,)-

: If p does not divide the class number of Q({) then p is called regular, other-
wise p is called irregular. The first few irregular primes are 37, 59, 67, 101,
103, 131, 149, and 157 (which in fact divides two different Bernoulli numbers).
The irregular primes up to 125000 have been calculated by Wagstaff. Ap-
proximately 1 — e~ = 399 of primes are irregular and ¢~ ' ? =~ 619 are
regular. There are probability arguments which make these empirical results
plausible. It is known there are infinitely many irregular primes, but it is an
open problem to show there are infinitely many regular primes. Moreover,
it is not even known whether or not Fermat’s Last Theorem. even in the first
case, holds for infinitely many p.

One may also ask how often Z[{] has unique factorization, or equivalently
when the class number is equal to one. It turns out that the class number
grows quite rapidly as p increases, so there can only be finitely many p for
which there is unique factorization. In fact, Montgomery and Uchida proved
(independently) that the class number is one exactly when p < 19.

To finish this chapter we shall show that Q((,;) does not have class

number one. It is known that @(\/—Vﬁ) < Q({,;). For a proof, see the
Exercises for the next chapter, or use Lemma 4.7 plus Lemmg 4.8. The prime 2

splits in @(\/33) as sk, where £ = (2, (1 + \/—23)/2) (see the Exercises).
Let 2 be a prime of Q({,3) lying above 4. We claim that £ is nonprincipal.

MY, <

residue class field extension. In particular, f divides deg(@({,3)/Q(/ —23))
= 11, so f = 1 or 11 (actually, / = 1). Since z is nonprincipal and 7 is
principal, #'" is nonprincipal. Therefore 4’ cannot be principal. But if # is
principal, so is its norm. Therefore 2 is nonprincipal, so Z[{,5] cannot have
unique factorization.

NOTES

The proof of Theorem 1.1 is due to Kummer [2]. At present, the first case
has been proved for p < 6 x 10° (Lehmer [4]) using the Wieferich criterion:
if 22=1 £ 1 mod p* then the first case is true. For more on Fermat’s Last
Theorem, see Vandiver [1] and Ribenboim [1].

EXERCISES

1.1. (a) Show that the irreducible polynomial for { . is X7~ 17" 4 X7~ 2" R
X7""' 4 1 (one way to prove irreducibility: evaluate the polynomial as geometric
series to get a rational function, change X to X + 1, rewrite as a polynomial reduced
mod p, then use Eisenstein).
(b) Show the ring of integers of Q(( ) is Z[{,-]-

1.2. Suppose p = 1 (mod 3). Using the fact that Z, contains the cube roots of unity, show
that x? + y” = zf (mod p"), pAxyz, has solutions for each n > 1.
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Using the fact that Z[,/—5] has class number 2, show that x> + 5 = y> has no
solutions in rational integers.

. Show that the ideal £ = (2, (1 + \/ —23)/2) is nonprincipal in Z[(1 + \/—23)/2],

but that its third power is principal. Also show that sz = (2).

. Show that the class number of Q((, ;) is divisible by 3 (in fact, it is exactly 3, but do

not show this).



"Chapter 2
Basic Results

In this chapter we prove some basic results on cyclotomic fields which will lay
the groundwork for later chapters. We let {, denote a primitive nt's root of
unity. First we determine the ring of integers and discriminant of Q({,). We
start with the prime power case.

Proposition 2.1. The discriminant of Q(( ) is

4 p? 1)
where we have — if p" = 4 or if p = 3 (mod 4), and we have + otherwise.

ProoF. From Exercise 1.1, the ring of integers is Z[{,.], so an infegral basis is

{1, {pn, ..., (8P 7). The square of the determinant of ((¥)o<i<p-1)pn-1
0<j<pnpli

gives the discriminant. But this determinant is Vandermonde, so it equals
[l &= = (root of unity)- [T(1 — ¢&9).

0<k<j<pn k<j
p1ik ptjk

Since (1 — {,»") = —{,»"(1 — {3»), we may include all pairs j, k with j # k to
get the discriminant
det((};.)? = (root of unity)- [] (1 — 29
5 0<j,k<pn

ik

ptik
We immediately see that the discriminant, up to sign, must be a power of p.
Let v denote the valuation corresponding to the prime ideal (1 — {,.) of
Z[{,~]. As in the first chapter for the case n = 1, we have (1 — {,)®~ 7" =
(p). It follows that o(p) = (p — p" 'and o(1 — {,..) = p" ™forl <m < n.

9



