Eitan Frachtenberg
Uwe Schwiegelshohn (Eds.)

Job Scheduling
Strategies
for Parallel Processing

12th International Workshop, JSSPP 2006
Saint-Malo, France, June 2006
Revised Selected Papers

LNCS 4376

@ Springer

Eitan Frachtenberg Uwe Schwiegelshohn (Eds.)

Job Scheduling
Strategies
for Parallel Processing

12th International Workshop, JSSPP 2006
Saint-Malo, France, June 26, 2006
Revised Selected Papers

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

4376

Lecture Notes in Computer Science

For information about Vols. 1-4294

please contact your bookseller or Springer

Vol. 4405: L. Padgham, F. Zambonelli (Eds.), Agent-
Oriented Software Engineering VII. XII, 225 pages.
2007.

Vol. 4394: A. Gelbukh (Ed.), Computational Linguistics
and Intelligent Text Processing. X VI, 648 pages. 2007.

Vol. '4393: W. Thomas, P. Weil (Eds.), STACS 2007.
XVIIL, 708 pages. 2007.

Vol. 4392: S.P. Vadhan (Ed.), Theory of Cryptography.
XI, 595 pages. 2007.

Vol. 4390: S.O. Kuznetsov, S. Schmidt (Eds.), For-
mal Concept Analysis. X, 329 pages. 2007. (Sublibrary
LNAI).

Vol. 4385: K. Coninx, K. Luyten, K.A. Schneider (Eds.),
Task Models and Diagrams for Users Interface Design.
XI, 355 pages. 2007.

Vol. 4384: T. Washio, K. Satoh, H. Takeda, A. Inokuchi
(Eds.), New Frontiers in Artificial Intelligence. IX, 401
pages. 2007. (Sublibrary LNAI).

Vol. 4383: E. Bin, A. Ziv, S. Ur (Eds.), Hardware and
Software, Verification and Testing. XII, 235 pages. 2007.

Vol. 4381: J. Akiyama, W.Y.C. Chen, M. Kano, X. Li, Q.
Yu (Eds.), Discrete Geometry, Combinatorics and Graph
Theory. XI, 289 pages. 2007.

Vol. 4380: S. Spaccapietra, P. Atzeni, F. Fages, M.-S.
Hacid, M. Kifer, J. Mylopoulos, B. Pernici, P. Shvaiko, J.
Trujillo, 1. Zaihrayeu (Eds.), Journal on Data Semantics
VIII. XV, 219 pages. 2007.

Vol. 4378: 1. Virbitskaite, A. Voronkov (Eds.), Perspec-
tives of Systems Informatics. XIV, 496 pages. 2007.

Vol.4377: M. Abe (Ed.), Topics in Cryptology — CT-RSA
2007. X1, 403 pages. 2006.

Vol. 4376: E. Frachtenberg, U. Schwiegelshohn (Eds.),
Job Scheduling Strategies for Parallel Processing. VII,
257 pages. 2007.

Vol. 4373: K. Langendoen, T. Voigt (Eds.), Wireless Sen-
sor Networks. XIII, 358 pages. 2007.

Vol. 4372: M. Kaufmann, D. Wagner (Eds.), Graph
Drawing. X1V, 454 pages. 2007.

Vol. 4371: K. Inoue, K. Satoh, E. Toni (Eds.), Compu-
tational Logic in Multi-Agent Systems. X, 315 pages.
2007. (Sublibrary LNAI).

Vol. 4370: P.P Lévy, B. Le Grand, F. Poulet, M. Soto,
L. Darago, L. Toubiana, J.-F. Vibert (Eds.), Pixelization
Paradigm. XV, 279 pages. 2007.

Vol. 4369: M. Umeda, A. Wolf, O. Bartenstein, U. Geske,
D. Seipel, O. Takata (Eds.), Declarative Programming
for Knowledge Management. X, 229 pages. 2006. (Sub-
library LNAI).

Vol. 4368: T. Erlebach, C. Kaklamanis (Eds.), Approxi-
mation and Online Algorithms. X, 345 pages. 2007.

Vol. 4367: K. De Bosschere, D. Kaeli, P. Stenstrom, D.
Whalley, T. Ungerer (Eds.), High Performance Embed-
ded Architectures and Compilers. XI, 307 pages. 2007.

Vol. 4366: K. Tuyls, R. Westra, Y. Saeys, A. Nowé
(Eds.), Knowledge Discovery and Emergent Complex-
ity in Bioinformatics. IX, 183 pages. 2007. (Sublibrary
LNBI).

Vol. 4364: T. Kiihne (Ed.), Models in Software Engineer-
ing. XI, 332 pages. 2007.

Vol. 4362: J. van Leeuwen, G.F. Italiano, W. van der
Hoek, C. Meinel, H. Sack, F. Plasil (Eds.), SOFSEM
2007: Theory and Practice of Computer Science. XXI,
937 pages. 2007.

Vol. 4361: H.J. Hoogeboom, G. Paun, G. Rozenberg, A.
Salomaa (Eds.), Membrane Computing. IX, 555 pages.
2006.

Vol. 4360: W. Dubitzky, A. Schuster, PM.A. Sloot,
M. Schroeder, M. Romberg (Eds.), Distributed, High-
Performance and Grid Computing in Computational Bi-
ology. X, 192 pages. 2007. (Sublibrary LNBI).

Vol. 4358: R. Vidal, A. Heyden, Y. Ma (Eds.), Dynamical
Vision. IX, 329 pages. 2007.

Vol. 4357: L. Buttyan, V. Gligor, D. Westhoff (Eds.),
Security and Privacy in Ad-Hoc and Sensor Networks.
X, 193 pages. 2006.

Vol. 4355: J. Julliand, O. Kouchnarenko (Eds.), B 2007:
Formal Specification and Development in B. XIII, 293
pages. 2006.

Vol. 4354: M. Hanus (Ed.), Practical Aspects of Declar-
ative Languages. X, 335 pages. 2006.

Vol.4353: T. Schwentick, D. Suciu (Eds.), Database The-
ory — ICDT 2007. XI, 419 pages. 2006.

Vol. 4352: T.-J. Cham, J. Cai, C. Dorai, D. Rajan, T.-S.
Chua, L.-T. Chia (Eds.), Advances in Multimedia Mod-
eling, Part II. XVIII, 743 pages. 2006.

Vol. 4351: T.-J. Cham, J. Cai, C. Dorai, D. Rajan, T.-S.
Chua, L.-T. Chia (Eds.), Advances in Multimedia Mod-
eling, Part I. XIX, 797 pages. 2006.

Vol. 4349: B. Cook, A. Podelski (Eds.), Verification,
Model Checking, and Abstract Interpretation. XI, 395
pages. 2007.

Vol. 4348: S.T. Taft, R.A. Duff, R.L. Brukardt, E. Ploed-
ereder, P. Leroy (Eds.), Ada 2005 Reference Manual.
XXII, 765 pages. 2006.

Vol. 4347: J. Lopez (Ed.), Critical Information Infras-
tructures Security. X, 286 pages. 2006.

Vol. 4345: N. Maglaveras, I. Chouvarda, V. Koutkias, R.
Brause (Eds.), Biological and Medical Data Analysis.
XHI, 496 pages. 2006. (Sublibrary LNBI).

Vol. 4344: V. Gruhn, F. Oquendo (Eds.), Software Archi-
tecture. X, 245 pages. 2006.

Vol. 4342: H. de Swart, E. Ortowska, G. Schmidt, M.
Roubens (Eds.), Theory and Applications of Relational
Structures as Knowledge Instruments 1I. X, 373 pages.
2006. (Sublibrary LNAI).

Vol. 4341: P.Q. Nguyen (Ed.), Progress in Cryptology -
VIETCRYPT 2006. XI, 385 pages. 2006.

Vol. 4340: R. Prodan, T. Fahringer, Grid Computing.
XXIII, 317 pages. 2007.

Vol. 4339: E. Ayguadé, G. Baumgartner, J. Ramanujam,
P. Sadayappan (Eds.), Languages and Compilers for Par-
allel Computing. XI., 476 pages. 2006.

Vol. 4338: P. Kalra, S. Peleg (Eds.), Computer Vision,
Graphics and Image Processing. XV, 965 pages. 2006.

Vol. 4337: S. Arun-Kumar, N. Garg (Eds.), FSTTCS
2006: Foundations of Software Technology and Theo-
retical Computer Science. XIII, 430 pages. 2006.

Vol. 4335: S.A. Brueckner, S. Hassas, M. Jelasity, D.
Yamins (Eds.), Engineering Self-Organising Systems.
XII, 212 pages. 2007. (Sublibrary LNAI).

Vol. 4334: B. Beckert, R. Hihnle, P.H. Schmitt (Eds.),
Verification of Object-Oriented Software. XXIX, 658
pages. 2007. (Sublibrary LNAI).

Vol. 4333: U. Reimer, D. Karagiannis (Eds.), Practical
Aspects of Knowledge Management. XII, 338 pages.
2006. (Sublibrary LNAI).

Vol. 4332: A. Bagchi, V. Atluri (Eds.), Information Sys-
tems Security. XV, 382 pages. 2006.

Vol. 4331: G. Min, B. Di Martino, L.T. Yang, M. Guo, G.
Ruenger (Eds.), Frontiers of High Performance Comput-
ing and Networking — ISPA 2006 Workshops. XXXVII,
1141 pages. 2006.

Vol. 4330: M. Guo, L.T. Yang, B. Di Martino, H.P. Zima,
J. Dongarra, F. Tang (Eds.), Parallel and Distributed Pro-
cessing and Applications. XVIII, 953 pages. 2006.

Vol. 4329: R. Barua, T. Lange (Eds.), Progress in Cryp-
tology - INDOCRYPT 2006. X, 454 pages. 2006.

Vol. 4328: D. Penkler, M. Reitenspiess, F. Tam (Eds.),
Service Availability. X, 289 pages. 2006.

Vol. 4327: M. Baldoni, U. Endriss (Eds.), Declarative

Agent Languages and Technologies I'V. VIII, 257 pages.
2006. (Sublibrary LNAI).

Vol. 4326: S. Gobel, R. Malkewitz, I. Iurgel (Eds.), Tech-
nologies for Interactive Digital Storytelling and Enter-
tainment. X, 384 pages. 2006.

Vol.4325:]. Cao, L. Stojmenovic, X. Jia, S.K. Das (Eds.),
Mobile Ad-hoc and Sensor Networks. XIX, 887 pages.
2006.

Vol. 4323: G. Doherty, A. Blandford (Eds.), Interactive
Systems. XI, 269 pages. 2007.

Vol. 4320: R. Gotzhein, R. Reed (Eds.), System Analysis
and Modeling: Language Profiles. X, 229 pages. 2006.

Vol. 4319: L.-W. Chang, W.-N. Lie (Eds.), Advances in
Image and Video Technology. XX VI, 1347 pages. 2006.

Vol. 4318: H. Lipmaa, M. Yung, D. Lin (Eds.), Informa-
tion Security and Cryptology. XI, 305 pages. 2006.

Vol. 4317: S.K. Madria, K.T. Claypool, R. Kannan, P.
Uppuluri, M.M. Gore (Eds.), Distributed Computing and
Internet Technology. XIX, 466 pages. 2006.

Vol. 4316: M.M. Dalkilic, S. Kim, J. Yang (Eds.), Data
Mining and Bioinformatics. VIII, 197 pages. 2006. (Sub-
library LNBI).

Vol. 4314: C. Freksa, M. Kohlhase, K. Schill (Eds.), KI
2006: Advances in Artificial Intelligence. XII, 458 pages.
2007. (Sublibrary LNAI).

Vol. 4313: T. Margaria, B. Steffen (Eds.), Leveraging
Applications of Formal Methods. IX, 197 pages. 2006.

Vol. 4312: S. Sugimoto, J. Hunter, A. Rauber, A. Mor-
ishima (Eds.), Digital Libraries: Achievements, Chal-
lenges and Opportunities. XVIII, 571 pages. 2006.

Vol. 4311: K. Cho, P. Jacquet (Eds.), Technologies for
Advanced Heterogeneous Networks II. XI, 253 pages.
2006.

Vol. 4309: P. Inverardi, M. Jazayeri (Eds.), Software En-
gineering Education in the Modern Age. VIII, 207 pages.
2006.

Vol. 4308: S. Chaudhuri, S.R. Das, H.S. Paul, S. Tirtha-
pura (Eds.), Distributed Computing and Networking.
XIX, 608 pages. 2006.

Vol. 4307: P. Ning, S. Qing, N. Li (Eds.), Information
and Communications Security. XIV, 558 pages. 2006.
Vol. 4306: Y. Avrithis, Y. Kompatsiaris, S. Staab, N.E.
O’Connor (Eds.), Semantic Multimedia. XII, 241 pages.
2006

Vol. 4305: A.A. Shvartsman (Ed.), Principles of Dis-
tributed Systems. XIII, 441 pages. 2006.

Vol. 4304: A. Sattar, B.-H. Kang (Eds.), Al 2006: Ad-
vances in Artificial Intelligence. XXVII, 1303 pages.
2006. (Sublibrary LNAI).

Vol. 4303: A. Hoffmann, B.-H. Kang, D. Richards, S.
Tsumoto (Eds.), Advances in Knowledge Acquisition
and Management. XI, 259 pages. 2006. (Sublibrary
LNAI).

Vol. 4302: J. Domingo-Ferrer, L. Franconi (Eds.), Pri-
vacy in Statistical Databases. XI, 383 pages. 2006.

Vol. 4301: D. Pointcheval, Y. Mu, K. Chen (Eds.), Cryp-
tology and Network Security. XIII, 381 pages. 2006.

Vol. 4300: Y.Q. Shi (Ed.), Transactions on Data Hiding
and Multimedia Security I. IX, 139 pages. 2006.

Vol. 4299: S. Renals, S. Bengio, J.G. Fiscus (Eds.), Ma-
chine Learning for Multimodal Interaction. XII, 470
pages. 2006.

Vol. 4297: Y. Robert, M. Parashar, R. Badrinath, V.K.
Prasanna (Eds.), High Performance Computing - HiPC
2006. XXIV, 642 pages. 2006.

Vol. 4296: M.S. Rhee, B. Lee (Eds.), Information Se-
curity and Cryptology — ICISC 2006. XIII, 358 pages.
2006.

Vol. 4295: J.D. Carswell, T. Tezuka (Eds.), Web and
Wireless Geographical Information Systems. XI, 269
pages. 2006.

Preface

This volume contains the papers presented at the 12** workshop on Job Schedul-
ing Strategies for Parallel Processing. The workshop was held in Saint-Malo,
France, on June 16, 2006, in conjunction with SIGMETRICS 2006.

This year, the presented papers covered a large variety of topics. The first
three papers address workflow problems. “Provably efficient two-level adaptive
scheduling” by Yuxiong He et al. provides a theoretical analysis of a schedul-
ing approach for independent jobs consisting of threads, that are represented
by a DAG. Job and thread scheduling are separately addressed with different
algorithms. The task graph is not known a priori in the paper “Scheduling dy-
namically spawned processes in MPI-2” by Marcia Cera et al., but processes are
spawned dynamically. This paper is based on the features of MPI-2 and evaluates
its scheduler with the help of an experiment. The DAG of a Grid job is known
at submission time in the problem discussed in the paper “Advance reservation
policies for workflows” by Henan Zhao and Rizos Sakellariou. Here, the tasks of
this job are automatically scheduled on heterogeneous machines using advance
reservation such that the overall execution time frame of the user is obeyed. The
proposed approach is again experimentally evaluated.

The next three papers describe classical job scheduling problems that arise
when parallel jobs are submitted to parallel systems with little or no node hetero-
geneity. The paper “On advantages of scheduling using Genetic Fuzzy systems”
by Carsten Franke et al. presents scheduling algorithms that support arbitrary
scheduling criteria. The algorithms are trained with recorded workloads using
Fuzzy concepts. Their performances are evaluated by simulations with those
workloads. In their paper “Moldable parallel job scheduling using job efficiency:
An iterative approach,” Gerald Sabin et al. show that scalability information of
a job can help to improve the efficiency of this job. As in the previous paper,
they use real workload traces for evaluation. The missing scalability information
is provided with the help of a well-established speedup model. This model is also
used in the paper “Adaptive job scheduling via predictive job resource alloca-
tion” by Lawrence Barsanti and Angela Sodan. Similar to the previous paper, the
scalability of jobs improves the schedule performance. In addition, the resource
allocation considers future job submissions based on a suitable prediction.

Many scientific applications are data intensive. For those applications, it is
important to consider the network latency to transfer data from the storage
facility to the parallel processing system. It is possible to improve schedule per-
formance by scheduling those jobs on compute resources that are local to the
storage resources. This is the subject of the paper “A data locality-aware online
scheduling approach for I/O-intensive jobs with file sharing” by Gaurav Kanna
et al. The next two papers address job migration issues. “Volunteer computing
on clusters” by Deepti Vyas and Jaspal Subhlok demonstrates that nodes of

VI Preface

a compute cluster are often underutilized while executing parallel applications.
Exploiting this observation by a cycle stealing approach will lead only to a small
slowdown of the parallel host application while system throughput increases sig-
nificantly. Idleness of processors is also the subject of the paper “Load balancing:
Toward the Infinite Network and Beyond” by Javier Bustos-Jiménez. There, ac-
tive objects are sent to underutilized processors that are determined with the
help of a peer-to-peer approach. The performance of the approach is evaluated by
an experiment with a real application and also by simulations. Jonathan Wein-
berg and Allan Snavely observed in their paper “Symbiotic space-sharing on
SDSC’s DataStar system” that the hierarchical architecture of modern parallel
processing systems leads to a significant amount of resource sharing among in-
dependent jobs and thus to performance degradation. They propose to generate
better schedules by considering combinations of jobs with minimum interference
between them. Again the performance is evaluated with the help of experiments
with real applications.

The last two papers address job modeling issues in Grid computing. “Mod-
eling job arrivals in a data-intensive Grid” by Hui Li et al. analyzes job ar-
rival processes in workloads from high-energy physics and uses a special Markov
process to model them. Virtual organizations determine the granularity of the
model. The paper “On Grid performance evaluation using synthetic workloads”
by Alexandru Iosup et al. discusses various aspects of performance analysis. The
authors review different performance metrics and show important properties of
existing workloads. Then, they present workload modeling requirements that are
specific for Grid computing.

All submitted papers went through a complete review process, with the full
version being read and evaluated by an average of five reviewers. We would like
to thank the Program Committee members for their willingness to participate in
this effort and their excellent, detailed reviews: Su-Hui Chiang, Walfredo Cirne,
Allen Downey, Dror Feitelson, Allan Gottlieb, Andrew Grimshaw, Moe Jette,
Richard Lagerstrom, Virginia Lo, Jose Moreira, Bill Nitzberg, Mark Squillante,
John Towns, Jon Weissman, and Ramin Yahyapour.

The continued interest in this area is reflected by the longevity of this work-
shop, which has now reached its 12th consecutive year. The proceedings of pre-
vious workshops are available from Springer as LNCS volumes 949, 1162, 1291,
1459, 1659, 1911, 2221, 2537, 2862, 3277, and 3834 (and since 1998 they have
also been available online).

Finally, we would like to give our warmest thanks to Dror Feitelson and Larry
Rudolph, the founding co-organizers of the workshop. Their efforts to promote
this field are evidenced by the continuing success of this workshop.

November 2006 Eitan Frachtenberg
Uwe Schwiegelshohn

Table of Contents

Provably Efficient Two-Level Adaptive Scheduling
Yuziong He, Wen-Jing Hsu, and Charles E. Leiserson

Scheduling Dynamically Spawned Processes in MPI-2.................
Madrcia C. Cera, Guilherme P. Pezzi, Mauricio L. Pilla,
Nicolas Maillard, and Philippe O.A. Navauzx

Advance Reservation Policies for Workflows
Henan Zhao and Rizos Sakellariou

On Advantages of Scheduling Using Genetic Fuzzy Systems
Carsten Franke, Joachim Lepping, and Uwe Schwiegelshohn

Moldable Parallel Job Scheduling Using Job Efficiency: An Iterative
Approach
Gerald Sabin, Matthew Lang, and P. Sadayappan

Adaptive Job Scheduling Via Predictive Job Resource Allocation.
Lawrence Barsanti and Angela C. Sodan

A Data Locality Aware Online Scheduling Approach for I/O-Intensive
Jobs with File Sharing
Gaurav Khanna, Umit Catalyurek, Tahsin Kurc,
P. Sadayappan, and Joel Saltz

Volunteer Computing on Clusterso,
Deepti Vyas and Jaspal Subhlok

Load Balancing: Toward the Infinite Network and Beyond.............
Javier Bustos-Jiménez, Denis Caromel, and José M. Piquer

Symbiotic Space-Sharing on SDSC’s DataStar System
Jonathan Weinberg and Allan Snavely

Modeling Job Arrivals in a Data-Intensive Grid
Hui Li, Michael Muskulus, and Lex Wolters

On Grid Performance Evaluation Using Synthetic Workloads
Alexandru Iosup, Dick H.J. Epema, Carsten Franke,
Alezander Papaspyrou, Lars Schley, Baiyi Song, and
Ramin Yahyapour

Author Index

33

47

68

94

Provably Efficient
Two-Level Adaptive Scheduling*

Yuxiong He!, Wen-Jing Hsu'!, and Charles E. Leiserson?

! Nanyang Technological University, Nanyang Avenue 639798, Singapore
yxhe@mit.edu, hsu@ntu.edu.sg
2 Massachusetts Institute of Technology, Cambridge, MA 02139, USA
cel@mit.edu

Abstract. Multiprocessor scheduling in a shared multiprogramming en-
vironment can be structured in two levels, where a kernel-level job sched-
uler allots processors to jobs and a user-level thread scheduler maps the
ready threads of a job onto the allotted processors. This paper presents
two-level scheduling schemes for scheduling “adaptive” multithreaded
jobs whose parallelism can change during execution. The AGDEQ al-
gorithm uses dynamic-equipartioning (DEQ) as a job-scheduling policy
and an adaptive greedy algorithm (A-GREEDY) as the thread scheduler.
The ASDEQ algorithm uses DEQ for job scheduling and an adaptive
work-stealing algorithm (A-STEAL) as the thread scheduler. AGDEQ
is suitable for scheduling in centralized scheduling environments, and
ASDEQ is suitable for more decentralized settings. Both two-level sched-
ulers achieve O(1)-competitiveness with respect to makespan for any set
of multithreaded jobs with arbitrary release time. They are also O(1)-
competitive for any batched jobs with respect to mean response time.
Moreover, because the length of the scheduling quantum can be adjusted
to amortize the cost of context-switching during processor reallocation,
our schedulers provide control over the scheduling overhead and ensure
effective utilization of processors.

1 Introduction

Multiprocessors are often used for multiprogrammed workloads where many par-
allel applications share the same machine. As Feitelson points out in his excellent
survey [27], schedulers for these machines can be implemented using two levels:
a kernel-level job scheduler which allots processors to jobs, and a user-level
thread scheduler which maps the threads belonging to a given job onto the
allotted processors. The job schedulers may implement either space-sharing,
where jobs occupy disjoint processor resources, or time-sharing, where differ-
ent jobs may share the same processor resources at different times. Moreover,
both the thread scheduler and the job scheduler may be either adaptive (called
“dynamic” in [19]), allowing the number of processors allotted to a job to vary

* This research was supported in part by the Singapore-MIT Alliance and NSF Grants
ACI-0324974 and CNS-0540248.

E. Frachtenberg and U. Schwiegelshohn (Eds.): JSSPP 2006, LNCS 4376, pp. 1-32, 2007.
© Springer-Verlag Berlin Heidelberg 2007

2 Y. He, W.-J. Hsu, and C.E. Leiserson

while the job is running, or nonadaptive (called “static” in [19]), where a job
runs on a fixed number of processors over its lifetime. A clairvoyant schedul-
ing algorithm may use knowledge of the jobs’ execution time, whereas a non-
clairvoyant algorithm assumes nothing about the execution time of the jobs.
This paper presents two provably efficient two-level adaptive schedulers, each of
which schedules jobs nonpreemptively and without clairvoyance.

With adaptive scheduling [4] (called “dynamic” scheduling in many other
papers [27,60,41,58,37]), the job scheduler can change the number of processors
allotted to a job while the job executes. Thus, new jobs can enter the system, be-
cause the job scheduler can simply recruit processors from the already executing
jobs and allot them to the new jobs. Without an adequate feedback mechanism,
however, both adaptive and nonadaptive schedulers may waste processor cycles,
because a job with low parallelism may be allotted more processors than it can
productively use.

If individual jobs provide parallelism feedback to the job scheduler, waste
can be avoided. When a job does not require many processors, it can release the
excess processors to the job scheduler to be reallotted to jobs in need. When a
job needs more processors, it can make a request to the job scheduler. Based
on this parallelism feedback, the job scheduler can adaptively change the allot-
ment of processors according to the availability of processors and the system
administrative policy.

A two-level scheduler communicates the parallelism feedback by each job re-
questing processors from a job scheduler at regular intervals, called quanta. The
quantum length is typically chosen to be long enough to amortize the schedul-
ing overheads, including the cost of reallotting processors among the jobs. The
job scheduler uses the parallelism feedback to assign the available processors to
the jobs according to its administrative policy. During the quantum, the job’s
allotment does not typically change. Once a job is allotted processors, the job’s
thread scheduler maps the job’s threads onto the allotted processors, reallocating
them if necessary as threads are spawned and terminated.

Various researchers [21,20,29,41,59] have proposed the use of instantaneous
parallelism — the number of processors the job can effectively use at the cur-
rent moment — as the parallelism feedback to the job scheduler. Unfortunately,
using instantaneous parallelism as feedback can either cause gross misallocation
of processor resources [49] or introduce significant scheduling overhead. For ex-
ample, the parallelism of a job may change substantially during a scheduling
quantum, alternating between parallel and serial phases. Depending on which
phase is currently active, the sampling of instantaneous parallelism may lead the
task scheduler to request either too many or too few processors. Consequently,
the job may either waste processor cycles or take too long to complete. On the
other hand, if the quantum length is set to be small enough to capture frequent
changes in instantaneous parallelism, the proportion of time spent reallotting
processors among the jobs increases, resulting in a high scheduling overhead.

A-GREEDY [1] and A-STEAL [2,3] are two adaptive thread schedulers that pro-
vide the parallelism feedback to the job scheduler. Rather than using

Provably Efficient Two-Level Adaptive Scheduling 3

instantaneous parallelism, these thread schedulers employ a single summary
statistic and the job’s behavior in the previous quantum to make processor re-
quests of the job scheduler. Even though this parallelism feedback is generated
based on the job’s history and may not be correlated to the job’s future par-
allelism, A-GREEDY and A-STEAL still guarantee to make effective use of the
available processors.

Intuitively, if each job provides good parallelism feedback and makes produc-
tive use of available processors, a good job scheduler should ensure that all the
jobs perform well. In this paper, we affirm this intuition for A-GREEDY and
A-STEAL in the case when the job scheduler implements dynamic equipartition-
ing (DEQ) [55,41]. DEQ gives each job a fair allotment of processors based on
the job’s request, while allowing processors that cannot be used by a job to be
reallocated. DEQ was introduced by McCann, Vaswani, and Zahorjan [41] based
on earlier work on equipartitioning by Tucker and Gupta [55], and it has been
studied extensively [21,20,29,42,41,24,36,46,45, 59,40, 25].

This paper shows that efficient two-level adaptive schedulers can ensure that
all jobs can perform well. AGDEQ), which couples DEQ with A-GREEDY, is
suitable for centralized thread scheduling, such as might be used to schedule
data-parallel jobs, wherein each job’s thread scheduler can dispatch all the ready
threads to the allotted processors in a centralized manner. ASDEQ, which cou-
ples DEQ with A-STEAL, is suitable when each job distributes threads over the
allotted processors using decentralized work-stealing [16,31,47,13].

The main contributions of this paper are as follows. In a centralized environ-
ment, AGDEQ guarantees O(1)-competitiveness against an optimal clairvoyant
scheduler with respect to makespan. For any set of batched jobs, where all jobs
have the same release time, AGDEQ also achieves O(1)-competitiveness with
respect to mean response time. In a decentralized settings where the scheduler
has no knowledge of all the available threads at the current moment, ASDEQ
guarantees O(1)-competitiveness with respect to makespan for any set of jobs
with arbitrary job release time. It is also O(1)-competitive with respect to the
mean response time for batched jobs. Unlike many previous results, which ei-
ther assume clairvoyance [38, 18,43, 33, 34, 56, 48, 50, 57] or use instantaneous
parallelism [21,14,22], our schedulers remove these restrictive assumptions. We
generate parallelism feedback after each quantum based on the job’s behavior
in the past quantum. Even though job’s future parallelism may not be corre-
lated with its history of parallelism, our schedulers can still guarantee constant
competitiveness for both the makespan and the mean response time. Moreover,
because the quantum length can be adjusted to amortize the cost of context-
switching during processor reallocation, our schedulers provide control over the
scheduling overhead and ensure effective utilization of processors.

The remainder of this paper is organized as follows. Section 2 describes the
job model, scheduling model, and objective functions. Section 3 describes the
AGDEQ algorithm. Section 4 and 5 analyze the competitiveness of AGDEQ
with respect to makespan and mean response time, respectively. Section 6
presents the ASDEQ algorithm and analyzes its performance. Section 7 gives a

4 Y. He, W.-J. Hsu, and C.E. Leiserson

lower bound on the competitiveness for mean response time. Section 9 concludes
the paper by raising issues for future research.

2 Models and Objective Functions

This section provides the background formalisms for two-level scheduling, which
will be used to study AGDEQ and ASDEQ. We formalize the job model, define
the scheduling model, and present the optimization criteria of makespan and
mean response time.

Job Model
A two-level scheduling problem consists of a collection of independent jobs
g = {Jl, J2, .00 J|} to be scheduled on a collection of P identical processors.

This paper restricts its attention to the situation where | 7| < P, that is, the
number of jobs does not exceed the number of processors. (The situation where
the parallel computer may sometimes be heavily loaded with jobs remains an
interesting open problem.) Like prior work on scheduling of multithreaded jobs
[12,13,11,10,8,26,32,44], we model the execution of a multithreaded job J; as a
dynamically unfolding directed acyclic graph (dag) such that J; = (V(J;), E(J;))
where V(J;) and E(J;) represent the sets of .J;’s vertices and edges, respectively.
Similarly, let V(J) = U,,c ; V(Ji). Each vertex v € V() represents a unit-time
instruction. The work Ti(z) of the job J; corresponds to the total number of
vertices in the dag, that is, T (7) = |V (J;)|. Each edge (u,v) € E(J;) represents
a dependency between the two vertices. The precedence relationship u < v holds
if and only if there exists a path from vertex u to vertex v in E(J;). The eritical-
path length T, (i) corresponds to the length of the longest chain of precedence
dependencies. The release time r(i) of the job J; is the time immediately after
which J; becomes first available for processing. For a batched job set 7, all jobs
in J have the same release time. (Without loss of generality, we assume that
r(i) =0 for all J; € J.)

Scheduling Model

Our scheduling model assumes that time is broken into a sequence of equal-sized
scheduling quanta 1,2, ..., each of length L, where each quantum ¢ includes
the interval [Lq, Lg+1, ..., L(g+ 1) — 1] of time steps. The quantum length L is
a system configuration parameter chosen to be long enough to amortize schedul-
ing overheads. These overheads might include the time to reallocate processors
among the various jobs and the time for the thread scheduler to communicate
with the job scheduler, which typically involves a system call.

The job scheduler and thread schedulers interact as follows. The job scheduler
may reallocate processors between quanta. Between quantum ¢ — 1 and quan-
tum ¢, the thread scheduler (for example, A-GREEDY or A-STEAL) of a given
job J; determines the job’s desire d(i,q), which is the number of processors J;
wants for quantum ¢. The thread scheduler provides the desire d(i, q) to the job
scheduler as its parallelism feedback. Based on the desire of all running jobs,
the job scheduler follows its processor-allocation policy (for example, dynamic

Provably Efficient Two-Level Adaptive Scheduling 5

equi-partitioning) to determine the allotment a (i,q) of the job with the con-
straint that a (7, q) < d(7,q). Once a job is allotted its processors, the allotment
does not change during the quantum. Consequently, the thread scheduler must do
a good job in estimating how many processors it will need in the next quantum,
as well as scheduling the ready threads on the allotted processors. Moreover, the
thread scheduler must operate in an online and nonclairvoyant manner, oblivious
to the future characteristics of the dynamically unfolding dag.

A schedule x = (7,7) of a job set J on P processors is defined as two map-
pings 7 : V(J) — {1,2,...,00} and 7 : V(J) — {1,2,..., P}, which map the
vertices in the job set 7 to the set of time steps and to the set of processors in
the machine, respectively. A valid mapping must preserve the precedence rela-
tionship of each job: for any two vertices u,v € V(7), if u < v, then 7(u) < 7(v),
that is, the vertex u must be executed before the vertex v. A valid mapping must
also ensure that a processor is only assigned to one job at any time: for any two
distinct vertices u,v € V(7), we have 7(u) # 7(v) or w(u) # 7 (v).

Objective Functions
We can now define the objective functions that a two-level scheduler should
minimize.

Definition 1. Let X be a schedule of a job set J on P processors. The com-
pletion time a job J; € J is

Tx(i) = gg};f?(v) ’

and the makespan of J is

Tx(J) = Sng:}; T (i) -
The response time of a job J; € J is

Rx(2) = Tx (i) — r(3) ,

the total response time of J is

Rx(J) = Y Rx(i),

Ji€T

and the mean response time of J is

Rx(J) =Rx(9)/|T] -

That is, the completion time of J; is simply the time at which the schedule
completes the execution of J;. The makespan of 7 is the time taken to complete
all jobs in the job set. The response time of a job .J; is the duration between
its release time r(i) and the completion time Ty (i). The total response time
of a job set is the sum of the response times of the individual jobs, and the
mean response time is the arithmetic average of the jobs’ response times. For

6 Y. He, W.-J. Hsu, and C.E. Leiserson

batched jobs where r(i) = 0 for all J; € 7, the total response time simplifies to
Rx(J) = X jie7 T ().

Competitiveness

The competitive analysis of an online scheduling algorithm compares the algo-
rithm against an optimal clairvoyant algorithm. Let T*(7) denote the makespan
of the jobset 7 scheduled by an optimal clairvoyant scheduler, and x(A) denote
the schedule produced by an algorithm A for the job set 7. A deterministic
algorithm A is said to be c-competitive if there exist constants ¢ > 0 and b > 0
such that Tx(4)(7) < ¢-T*(J) + b holds for the schedule X(A) of each job set.
A randomized algorithm A is said to be c-competitive if there exists constants
¢>0and b > 0 such that E [Ty4)(J)] < ¢- T*(J) + b holds for the schedule
X(A) of each job set. Thus, for each job set [J, a c-competitive algorithm is
guaranteed to have makespan (or expected makespan) within a factor ¢ of that
incurred in the optimal clairvoyant algorithm (up to the additive constant b).
We shall show that AGDEQ and ASDEQ are c-competitive with respect to
makespan, where ¢ > 0 is a small constant. For the mean response time, we shall
show that our algorithm is O(1)-competitive for batched jobs.

3 The AGDEQ Algorithm

AGDEQ is a two-level adaptive scheduler, which uses A-GREEDY [1] as its
thread scheduler and DEQ [41] as its job scheduler. Given a set 7 of jobs and P
processors, DEQ works at the kernel level, partitioning the P processors among
the jobs. Within each job, A-GREEDY schedules threads at user level onto the
allotted processors. The interactions between DEQ and A-GREEDY follow the
scheduling model described in Section 2. At the beginning of each quantum
g, the A-GREEDY thread scheduler for each job J; € J provides its desire
d(i, q) as parallelism feedback to the DEQ job scheduler. DEQ collects the desire
information from all jobs and decides the allotment a (7, q) for each job J;. In
this section, we briefly overview the basic properties of A-GREEDY and DEQ.

The Adaptive Greedy Thread Scheduler

A-GREEDY [1] is an adaptive greedy thread scheduler with parallelism feedback.
In a two-level adaptive scheduling system, A-GREEDY performs the following
functions.

e Between quanta, it estimates its job’s desire and requests processors from
the job scheduler using its desire-estimation algorithm.

e During the quantum, it schedules the ready threads of the job onto the
allotted processors using its thread-scheduling algorithm.

We now describe each of these algorithms.

A-GREEDY’s desire-estimation algorithm is parameterized in terms of a uti-
lization parameter 6 > 0 and a responsiveness parameter p > 1, both
of which can be tuned to affect variations in guaranteed bounds for waste and
completion time.

Provably Efficient Two-Level Adaptive Scheduling 7

Before each quantum, A-GREEDY for a job J; € J provides parallelism feed-
back to the job scheduler based on the J;’s history of utilization for the previous
quantum. A-GREEDY classifies quanta as “satisfied” versus “deprived” and “effi-
cient” versus “inefficient.” A quantum gq is satisfied if a (i,q) = d(i,q), in which
case J;’s allotment is equal to its desire. Otherwise, the quantum is deprived.
The quantum q is efficient if A-GREEDY utilizes no less than a ¢ fraction of
the total allotted processor cycles during the quantum, where ¢ is the utiliza-
tion parameter. Otherwise, the quantum is inefficient. Of the four possibilities
of classification, however, A-GREEDY only uses three: inefficient, efficient-and-
satisfied, and efficient-and-deprived.

Using this three-way classification and the job’s desire for the previous quan-
tum, A-GREEDY computes the desire for the next quantum using a simple
multiplicative-increase, multiplicative-decrease strategy. If quantum g — 1 was
inefficient, A-GREEDY decreases the desire, setting d(i,q) = d(i,q — 1)/p, where
p is the responsiveness parameter. If quantum ¢ — 1 was efficient and satis-
fied, A-GREEDY increases the desire, setting d(i,q) = pd(i,q — 1). If quantum
q — 1 was efficient but deprived, A-GREEDY keeps desire unchanged, setting
d(i,q) = d(i,q—1).

A-GREEDY’s thread-scheduling algorithm is based on greedy scheduling [28,
15,12]. After A-GREEDY for a job J; € J receives its allotment a (i, q) of proces-
sors from the job scheduler, it simply attempts to keep the allotted processors
as busy as possible. During each time step, if there are more than a (i, q) ready
threads, A-GREEDY schedules any a (7, ¢) of them. Otherwise, it schedules all of
them.

The Dynamic-Equipartitioning Job Scheduler

DEQ is a dynamic-equipartitioning job scheduler [55,41] which attempts to give
each job a fair share of processors. If a job cannot use its fair share, however,
DEQ distributes the extra processors across the other jobs. More precisely, upon
receiving the desires {d(i, q)} from the thread schedulers of all jobs J; € 7, DEQ
executes the following processor-allocation algorithm:

1. Set n = |J|. If n = 0, return.

2. If the desire for every job J; € J satisfies d(i,q) > P/n, assign each job
a (i,q) = P/n processors.

3. Otherwise, let 7' = {J; € J : d(i,q) < P/n}. Allot a (i,q) = d(i,q) proces-
sors to each J; € J'. Update 7 = 7 — J’. Go to Step 1.

Accordingly, for a given quantum all jobs receive the same number of pro-
cessors to within 1, unless their desire is less. To simplify the analysis in this
paper, we shall assume that all deprived jobs receive exactly the same number
of processors, which we term the mean deprived allotment for the quantum.
Relaxing this assumption may double the execution-time bound of a job, but
our algorithms remain O(1)-competitive. A tighter but messier analysis retains
the constants of the simpler analysis presented here.

8 Y. He, W.-J. Hsu, and C.E. Leiserson

4 Makespan of AGDEQ

This section shows that AGDEQ is c-competitive with respect to makespan for
a constant ¢ > 1. The exact value of c is related to the choice of the utilization
parameter and responsiveness parameter in A-GREEDY. In this section, we first
review lower bounds for makespan. Then, we analyze the competitiveness of
AGDEQ in the simple case where all jobs are released at time step 0 and the
scheduling quantum length is L = 1. Finally, we analyze the competitiveness of
AGDEQ for the general case.

Lower Bounds

Given a job set 7 and P processors, lower bounds on the makespan of any job
scheduler can be obtained based on release time, work, and critical-path length.
Recall that for a job J; € 7, the quantities (i), T1(¢), and Too(2) represent the
release time, work, and critical-path length of J;, respectively. Let T*(7) denote
the makespan produced by an optimal scheduler on a job set 7 scheduled on P
processors. Let T1(J) = >_; ¢, T1(i) denote the total work of the job set. The
following two inequalities give two lower bounds on the makespan [14]:

TH(J) 2 max {r(i) + T (i)} (1)
T(J) 2 T1(J)/P . (2)

Analysis of a Simple Case
To ease the understanding of the analysis, we first consider the simple case where
all jobs are released at time step 0 and the quantum length L = 1. We show that
in this case, AGDEQ is O(1)-competitive with respect to makespan. Afterward,
we shall extend the analysis to the general case.

The next two lemmas, proved in [1], bound the satisfied steps and the waste
of any single job scheduled by A-GREEDY when the quantum length is L = 1.
We restate them as a starting point for our analysis.

Lemma 1. [I1] Suppose that A-GREEDY schedules a job J; with critical-path
length Too(7) on a machine with P processors. Let p = 2 denote A-GREEDY ’s re-
sponsiveness parameter, 6 = 1 its utilization parameter, and L = 1 the quantum
length. Then, A-GREEDY produces at most 2T (i) +1g P+ 1 satisfied steps. 0O

Lemma 2. [1] Suppose that A-GREEDY schedules a job J; with work T} (i)
on a machine. If p = 2 is A-GREEDY ’s responsiveness parameter, § = 1 is its
utilization parameter, and L = 1 is the quantum length, then A-GREEDY wastes
no more than 2T (i) processor cycles in the course of the computation. O

The next lemma shows that for the simple case, AGDEQ is O(1)-competitive
with respect to makespan. Let x = (7, 7) be the schedule of a job set 7 produced
by AGDEQ. For simplicity we shall use the notation T(J) = Tx(J) for the
remaining of the section.

Provably Efficient Two-Level Adaptive Scheduling 9

Lemma 3. Suppose that a job set J is scheduled by AGDEQ on a machine
with P processors, and suppose that all jobs arrive at time 0. Let p = 2 denote
A-GREEDY ’s responsiveness parameter, 6 = 1 its utilization parameter, and L
the quantum length. Then, the makespan of J is bounded by

T(J) <5T*(J) +1gP+1,
where T*(J) is the makespan produced by an optimal clairvoyant scheduler.

Proof. Suppose that the job Jj is the last job completed in the execution of the
job set J scheduled by AGDEQ. Since the scheduling quantum length is L = 1,
we can treat each scheduling quantum as a time step. Let S(k) and D(k) denote
the set of satisfied steps and the set of deprived steps respectively for job Jj.
Since J is the last job completed in the job set, we have T(7) = |S(k)|+|D(k)|.
We bound |S(k)| and |D(k)| separately.

By Lemma 1, we know that the number of satisfied steps for job Jj is |S(k)| <
2T (i) +1g P+ 1.

We now bound the number of deprived steps for Ji. If a step t is deprived for
job Jg, the job gets fewer processors than it requested. On such a step t € D(k),
DEQ must have allotted all the processors, and so we have) Jieg @ (i,t) = P,
where a (i,t) denotes the allotment of the job J; on step t. Let a (7, D(k)) =
2 oteD(k) 2oa,eq @ (i, 1) denote the total processor allotment of all jobs in 7
over Ji’s deprived steps D(k). We have a (7, D(k)) = 3 ,cppy 2og,eq @ (ist) =
ZteD(k) P = P|D(k)|. Since any allotted processor is either working on the
ready threads of the job or wasted because of insufficient parallelism, the to-
tal allotment for any job J; is bounded by the sum of its total work T3 (i) and
its total waste w(i). By Lemma 2, the waste for the job J; is w(i) < 2T}(i),
which is at most twice its work. Thus, the total allotment for job J; is at most
3T1(¢), and the total allotment for all jobs is at most > ; ., 3T1(i) = 3T1(7).
Therefore, we have a (7, D(k)) < 3T1(J). Given that a (J, D(k)) < 3T1(J) and
a(J,D(k)) = P|D(k)|, we have | D(k)| < 3T1(J)/P.

Thus, we have T(7) = |S(k)| + |D(k)| < 3Ty (J)/P + 2T (k) + g P + 1.
Combining this bound with Inequalities (1) and (2), we obtain T(J) < 5T*(7)+
lg P + 1.

Since P is the number of processors on the machine, which is an independent
variable with respect to any job set J, Lemma 3 indicates that AGDEQ is
5-competitive with respect to makespan.

Analysis of the General Case

With the intuition from the simple case in hand, we now generalize the makespan
analysis of AGDEQ to job sets with arbitrary job release times and scheduled
with any quantum length L. First, we state two lemmas from [1] that describe
the satisfied steps and the waste of a single job scheduled by A-GREEDY. Then,
we show that AGDEQ is O(1)-competitive with respect to makespan in the
general case.

