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Preface

The Y12M is a package of Fortran subroutines for the solution of large and sparse systems of
linear algebraic equations developed at the Regional Computing Centre at the University of
Copenhagen (RECKU). Gaussian elimination and pivotal interchanges are used to factorize
the matrix of the system into two triangular matrices L and U. An attempt to control the
magnitude of the non-zero elements in order to avoid overflows or underflows and to detect
singularities is carried out during the process of factorization. Iterative refinement of the first
solution may be performed. It is verified (by a large set of numerical examples) that iterative
refinement combined with a large drop-tolerance and a large stability factor is often very
successful when the matrix of the system is sparse. Not only is the accuracy improved but
the factorization time is also considerably reduced so that the total computing time for the
solution of the system with iterative refinement is less than that without iterative refinement
(in some examples the total computing time was reduced by more than three times). The

storage needed can often be reduced also.

Note that if the matrix of the system is dense then the total computing time for the iterative
solution of the system is always larger (because extra time must be used to perform the
iterations needed to improve the accuracy of the first solution). Note too that the use of
iterative refinement with dense matrices leads to an increase of the storage by a factor

approximately equal to 2 (because a copy of the matrix of the system must be kept).

The factorization found by the use of large values of the drop-tolerance is sometimes referred
to as incomplete. The matrix LU obtained in this way can be considered as a preconditioned
matrix. Preconditioned matrices are often used when systems with symmetric and positive

definite matrices are solved by the conjugate gradients method. When the matrices are
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general the conjugate gradients method can not be used (at least in its classical form). In our
package iterative refinement is used instead of the conjugate gradients method. The
experiments show that this approach is normally extremely efficient. This is especially true
for expensive problems, i.e. problems whose matrices are such that many fill-ins are
produced in the process of the LU decomposition. It should be mentioned that efficency is

most required just for such problems.

It is necessary to emphasize that a reliable error estimation will normally be obtained when
the iterative refinement process is convergent. No error estimation can be found when the
system is solved directly. However, one can expect that the required accuracy will be
achieved, especially when double precision is used, if the condition number of the coefficient
matrix is not extremely large. A subroutine which evaluates the condition number of a matrix
is available and may optionally be called. If this subroutine is called (which can be done when
the LU decomposition is calculated), then a reliable measure of the sensitivity of the results
to the round-off errors will be obtained. It must be emphasized that the use of the subroutine
for evaluation of the condition number is relatively cheap; its computational cost is equal to

the computational cost for two back substitutions.

There exist problems for which the application of iterative refinement is not very efficient
with regard to the storage and computing time used (e.g. when many systems with the same
_coefficient matrix are to be solved). Therefore the iterative refinement process should in our
opinion be only an option in the package for the solution of large and sparse systems of linear
algebraic equations. Using some machine dependent facilities (paging, multibanking etc.)
one can modify the iterative refinement option so that it will never use more storage than the
direct solution option. The price which should be paid for this is a modest increase of the
computing time. A modified version of the iterative refinement option which uses
multibanking has been developed for Univac 1100 series computers at RECKU (the Regional

Computing Centre at the University of Copenhagen).

All subroutines of the package have been run on three different computers: a Univac

1100/82 computer at the Regional Computing Centre at the University of Copenhagen
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(RECKU), an IBM 3033 computer at the Northern Europe University Computing Centre
(NEUCC) and a CDC Cyber 173 computer at the Regional Computing Centre at the

University of Aarhus (RECAU). Some results from these runs are reported in this book.

If reference is made to a paper or a book on some page, then its title, the name(s) of the
author(s) and the place of publication appear as a footnote on the same page. Thus the
superscript in any reference indicates the number of the footnote where a detailed
information about the reference is given. All references are also listed at the end of this book.

The INDEX can be used to check the page where a reference to any paper or book is made.

The codes of the subroutines with full documentation are in RECKU Library. They are
available at the usual costs (for the magnetic tape, machine time, shipment, etc.). The
requests should be addressed to J. Wasniewski. Advances in theory and the experience of
users may prompt alterations in these codes. Readers and/or users are invited to write to the

authors concerning any changes they may advocate.
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1. Introduction to Y12M

1.1. Scope of the Y12M

Y12M is concerned with the calculation of the solution of systems of linear algebraic

equations whose matrices are large and sparse.

Two matrices A and B are of the same structure

if a; # O implies b; # 0 and b;; +* 0 implies a; # O.

The following notation is useful in the classification: matrices denoted by the same letters

and subscripts are the same, matrices denoted by the same letters and different subscripts

are of the same structure (but different), matrices denoted by different letters are of different

structure.

We consider the solution of the following problems:

(i)

(ii)

Only one system with a single right-hand side, Ax = b, is to be solved.

A sequence of systems with the same matrices is to be solved. The

matrices of this sequence are

v AL AL

The case where one system with many right-hand sides is to be solved can

easily be presented as a sequence of systems with the same matrices.
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(iii) A sequence of systems whose matrices are different but of the same

structure is to be solved. This means that the matrices of this sequence are

AL A, .. A,

(iv) A sequence of systems whose matrices are of the same structure and
some of them (but not all of them) are different is to be solved. This means

that the matrices of this sequence are

B g, sl BB, wsenBigzose s B B poners B

p’ p P

(v) A sequence of systems whose matrices are of a different structure is to be

solved. The matrices of this sequence are
A B, C, .. Z

There are recommendations for the use of the package in each of the above five cases.

1.2. Background to the Problem

1.2.1. Storage Operations

Given a matrix A with Z non-zero elements. These elements are stored (ordered by rows) in
the first Z positions of array A. Their column numbers are stored in the same positions of
array SNR. Arrays A and SNR form the row ordered list. The row numbers of the non-zero

elements (ordered by columns) are stored in the first Z positions of array RNR. Array RNR
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forms the column ordered list. This storage algorithm was first proposed by Gustavson'?' .
During the computation the non-zero elements that are not necessary in subsequent stages
are removed from the lists. Unfortunately, some new non-zero elements (fill-ins) are created
and placed at the beginning or at the end of the row (column) if there are free locations.
Otherwise, a new copy of the row (column) at the end of the row (column) ordered list is
made, thus freeing the locations originally reserved for the row (column). Obviously there is a
limit to the number of new copies that can be made without exceeding the capacity of the
arrays, and therefore occasional “garbage” collections are necessary. More details about the
storage scheme used in our subroutines can be found in Zlatev, Schaumburg and

Wasniewski3 and Zlatev? .

1.2.2. Mathematical Method

Gaussian elimination is used with interchanges. The system

: PAQ(Q™x) = Pb

(where P and Q are permutation matrices) is replaced by

LU(Q™x) = Pb

1. Gustavson, F.G. - "Some Basic Techniques for Solving Sparse
Systems of Linear Equations”,
In: "Sparse Matrices and Their Applications” (D.J. Rose and R.A. Willoughby, eds.),
pp. 41-52, Plenum Press, New York, 1972.

2. Gustavson, F.G. - “Two Fast Algorithms for Sparse Matrices:
Multiplication and Permuted Transposition”,
ACM Trans. Math. Software, 4, pp. 250-269, 1978.

3. Zlatev, Z., Schaumburg, K. and Wasniewski, J. - “Implementation
of an Iterative Refinement Option in a Code for Large and Sparse Systems”.
Computers and Chemistry, 4, pp. 87-99, 1980.

4. Zlatev, Z. - "Use of Iterative Refinement in the Solution
of Sparse Linear Systems”, Report 1/79, Institute of Mathematics
and Statistics, The Royal Veterinary and Agricultural University,
Copenhagen, Denmark, 1979 (to appear in SIAM J. Numer. Anal.).
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(where L is a unit lower triangular matrix and U is an upper triangular matrix). Then the latter
system is solved by forward and back substitution and (normally) an approximation to the
solution vector x is computed. If iterative refinement is to be used then we denote the above

solution vector by x,; and perform the following successive calculations:
o1 = b-Ax, 4,
d._, =QU-'L""Pr,,,
X =Xy +dy g,
where k = 2, 3, 4, ...

(various stopping criteria must be used in order to terminate the process if the required
accuracy is achieved or if the process is not convergent). Normally the accuracy will be
improved if iterative refinement is applied in the calculations of the solution of linear

systems.

More details about the theory of the Gaussian elimination can be found e.g. in Forsythe and

Moler® , Stewart® and Wilkinson7'8) ,

5. Forsythe, G.E. and Moler, C.B. -
“Computer Solution of Linear Algebraic Equations”,
Prentice-Hall, Englewood Cliffs, N.J., 1967.

6. Stewart, G.W. - "Introduction to Matrix Computations”,
Academic Press, New York, 1973.

7. Wilkinson, J.H. - "Rounding Errors in Algebraic Processes”,
Prentice-Hall, Englewood Cliffs, N.J., 1963.

8. Wilkinson, J.H. - “The Algebraic Eigenvalue Problem”,
Oxford University Press, London, 1965.
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1.3. Recommendations on the Use of the Routines

1.3.1. Choice of Pivotal Strategy

Interchanges are normally used in order to preserve the sparsity of the original matrix (i.e. to
minimize the number of non-zero elements created during the factorization) and to ensure
numerically stable computations (i.e. to attempt to prevent the occurrence of large errors in

the solution vector).

The choice of the pivotal strategy depends on matrix A. We have three pivotal strategies,
each of which may be used by appropriate initialization of the parameter IFLAG(3) before the
call of the package. For general matrices A, IFLAG(3) = 1 must be used. In this case the
number of rows that will be investigated at each stage of the elimination in order to
determine the pivotal element must be given as well. This number must be initialized in
IFLAG(2) and should not exceed three. A generalized Markowitz strategy is used? , i.e.
among the elements of the selected IFLAG(2) rows with least numbers of non-zero
elements, the element which satisfies the stability requirement and for which the product of
the other non-zero elements in its row and the other non-zero elements in its column is a
minimum will be chosen as a pivotal element. Moreover, if there are several such elements,
the largest in absolute value will be chosen (more details can be found in Zlatev® and Zlatev,

Schaumburg and Wasniewski 9 ).

If the use of pivotal elements on the main diagonal is sufficient (and this is the case if e.g. the
matrix is symmetric and definite or diagonally dominant) then the package can take

advantage of this property. IFLAG(3) should be initialized with the value 2 before the call of

9. Zlatev, Z. - "On Some Pivotal Strategies in Gaussian Elimination
by Sparse Technique”, SIAM J. Numer. Anal., 17, pp. 18-30, 1980.

10. Zlatev, Z., Schaumburg, K. and Wasniewski, J. - “Implementation
of an Iterative Refinement Option in a Code for Large and Sparse Systems”.
Computers and Chemistry, 4, pp. 87-99, 1980.
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Y12M.

In rare cases no pivoting is necessary. The sparsity pattern of the matrix and the numerical
stability of the computation will be preserved if no pivotal interchanges are made. In this
case IFLAG(3) should be initialized with the value zero before the call of the Y12M. This
choice applies when matrix A is symmetric and definite or diagonally dominant and
moreover, nearly all non-zero elements are located not far from the main diagonal. When the
iterative refinement (IR) option is used then computations without pivoting are possible for

quite general matrices. This has successfully been demonstrated by Schaumburg et a/.'" .

Note that the use of the two special strategies may reduce the computing time considerably.
In our experiments with positive definite matrices and with the use of the above special
strategies, the computing time needed to solve the systems by our package is comparable to
the computing time needed to solve the same systems with codes especially written to be

used with positive definite matrices, see e.g. Zlatev, Wasniewski and Schaumburg'? .

1.3.2. Robustness

In our opinion the code for the solution of large and sparse systems of linear equations
should attempt to detect any of the following situations: (a) the elements of the matrix grow
too quickly (then the subsequent computations are not justified, and even overflow may take
place), (b) very small elements appear in the computation (so that underflows are possible),
(c) the matrix is singular (or nearly singular, so that the machine accuracy will not be

sufficient to compute an acceptable solution).

11. Schaumburg, K., Wasniewski, J. and Zlatev, Z. - “The Use of
Sparse Matrix Technigue in the Numerical Integration of Stiff
Systems of Linear Ordinary Differential Equations”. Computers and
Chemistry, 4, pp. 1-12, 1980.

12. Zlatev, Z., Wasniewski, J. and Schaumburg, K. - “Comparison of
Two Algorithms for Solving Large Linear Systems”.
Report No 80/9, Regional Computing Centre at the University of Copenhagen,
Vermundsgade 5, DK-2100 Copenhagen, Denmark, 1980.
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Below we describe how these problems are handled by the routines.

(a). Denote a = max|aij| where a;, i,j = 1,2,..N, are the elements of the original matrix A.

i’
Denote b, = max|a{'| where k = 1,2...., N-1; s = 1,2,.k; ij = s,5+1,...,N and af’ are
elements of matrix A which are to be transformed by the Gaussian transformations at stage s
of the elimination. Let u be the stability factor (where u > 1 and u should be initialized in
AFLAG(1) before the call of the package). It can then be shown that b, /a<(1+u)* {for k =
1.2,...,N-1) and even examples where b,/a = (1+u)* may be constructed. Moreover, during
the computation we compute LU = PAQ+E (instead of LU = PAQ) and for the elements e; of
the pertubation matrix E it is true that |e;] < 3.01b,_,& (where ¢ is the machine accuracy)'? .
Therefore it is clear that if b, (stored by the subroutine Y12MC in AFLAG(7)) grows very
quickly then the computed LU will be inaccurate and in an extreme case overflow may occur.
We monitor the largest computed elements and the growth factor b,/a and if this factor is
larger than a number prescribed by the user (this number should be initialized in AFLAG(3),
we recommend 10'8) the package will stop the computation and give the error indication

that the growth factor is too large. Note that smaller values of the stability factor AFLAG(1)

tend to decrease the growth factor.

(b). Sometimes very small elements appear during the computation. The drop-tolerance T
(stored in AFLAG(2)) may successfully be used in this situation. If during the computation
[a"] < T then the subroutine Y12MC will remove this element from the lists. In our
experiments even the use of very small values of the drop-tolerance (say T = 10-39) has
proven very efficient in the cases where underflows were registered by the use of T = 0. Note
that some compilers stop the computation and give error diagnostics if underflows appear.
We recommend the use of T = 10-'2. It must be emphasized here that larger values for the

drop-tolerance may be used with iterative refinement.

(c). Let the rank of matrix A be k < N. Then all elements in submatrix A, ,, obtained after k

stages of Gaussian elimination, should be equal to zero, but in general they are not because

13. Reid, J.K. - "A Note on the Stability of Gaussian Elimination”,
J. Inst. Math. Appl., 8, pp. 374-375, 1971.



Y12M -- Subroutines 8 Introduction to Y12M

of round-off errors (the elements of matrix A,,, are all elements whose row and column
numbers are larger than or equal to k+1). Nevertheless, all the elements of A, and the
successive submatrices are normally small and it is possible (and in our examples it was so)
that they will be removed and a row and/or a column without non-zero elements will be
found (in this case IFAIL = 7 or 8 on exit will normally indicate that the matrix is nurnerically

singular, except in the cases where the drop-tolerance is too large).

Another means of detecting singularity is the check for the minimal pivotal element (stored
on exit in AFLAG(8)). One might check the whole sequence of pivotal elements (stored in
array PIVOT, renamed Y in subroutine Y12MF). A very small pivotal element will indicate
that the matrix is nearly singular (if AFLAG(1) is not too large). Note that if the absolute value
of the current pivotal element is smaller than AFLAG(4) * AFLAG(6) then the routine stops
the computation. A very small number must be initialized in AFLAG(4) before the entry (we
recommend AFLAG(4) = 10-'2; the largest in absolute value element of the original matrix is

stored by subroutine Y12MB in AFLAG(6)).

1.3.3. Storage of Matrix L

The principle of storing the non-zero elements of the unit lower triangular matrix L is
automatically taken from the solution of systems with dense matrices (where this operation
does not require extra storage and extra time). In the case of systems with sparse matrices
the storage of L requires about 40% larger arrays A and SNR. Extra computing time is often
needed too. Therefore L must be stored only if the problem justifies it (i.e. we have problems
of type (ii) or (iv)) 14 . Moreover, note that some very large problems of type (i), (iii} or (v) may
be solved without the use of secondary storage (as for example discs) only if the non-zero
elements of matrix L are removed. If the non-zero elements of L are not required then
IFLAG(5) = 1 must be initialized (the length NN of arrays A and SNR may be reduced in this

case and NN = 2%Z will often be enough). If the non-zero elements are to be stored then

14. See Section 1.1 "Scope of Y12M"



