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Preface

Differential geometry is traditionally regarded as the study of smooth manifolds,
but sometimes this framework is too restrictive since it does not admit certain
basic geometric intuitions. On the contrary, these geometric constructions are
possible in the broader category of differentiable spaces. Let us indicate some
natural objects which are differentiable spaces and not manifolds:

— Singular quadrics. Elementary surfaces of classical geometry such as a quadratic
cone or a “doubly counted” plane are not smooth manifolds. Nevertheless, they
have a natural differentiable structure, which is defined by means of the consid-
eration of an appropriate algebra of differentiable functions.

For example, let us consider the quadratic cone X of equation 22—z —y* =0
in R*. It is a differentiable space whose algebra of differentiable functions is
defined by

A= C=(R¥) [px = C*(RY)/(* —a® — y?) ,

where py stands for the ideal of C>(R?) of all differentiable functions vanish-
ing on X. In other words, differentiable functions on X are just restrictions of
differentiable functions on R?.

Let us consider a more subtle example. Let Y be the plane in R? of equation
z = 0. Of course this plane is a smooth submanifold. On the contrary, the “doubly
counted” plane 22 = 0 makes no sense in the language of smooth manifolds. It
is another differentiable space with the same underlying topological space (the
plane Y') but a different algebra of differentiable functions:

A:=C™(R%)/(2?).

Note that A is not a subalgebra of C(Y,R), so that elements of A are not functions
on Y in the set-theoretic sense.

More generally. any closed ideal a of the Fréchet algebra C>(R") defines a
differentiable space (X, A), where

X:={reR": f(x)=0forany f € a}
is the underlying topological space and
A:=C™(R")/a

is the algebra of differentiable functions on this differentiable space. The pair
(X, A) is the basic example of a differentiable subspace of R" and the quotient
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map C®(R™) — C>°(R™)/a is interpreted as the restriction morphism, i.e., for
any f € C*°(R") the equivalence class [f] € C°>(R")/a is said to be the restriction
of f to the differentiable subspace under consideration.

— Fibres. Given a differentiable map @: V — W between smooth manifolds, it
may happen that some fibre ¢! (y) is not a smooth submanifold of V, although
it admits always a natural differentiable space structure.

Intersections. Given a smooth manifold, the intersection of two smooth sub-
manifolds may not be a smooth submanifold. On the contrary, intersections
always exist in the category of differentiable spaces. For example, given two dif-
ferentiable subspaces (X,C>(R™)/a) and (Y,C>(R™)/b) of R™, where a and b
are closed ideals of C>(R™), the corresponding intersection is defined by the
differentiable subspace

(XNY,C*R")/a+b).

A more explicit example: The intersection of the parabola y — 22 = 0 and
the tangent y = 0 is the “doubly counted” origin

({(0,0)},C=(R?)/(y — 2%, y) = Rz]/(«?))

and the number 2 = dim R[z]/(x?) defines the multiplicity of the intersection.
More generally, fibred products exist in the category of differentiable spaces.

~ Quotients. If we have a differentiable action of a Lie group G on a smooth
manifold V, it may occur that the topological quotient V/G admits no smooth
manifold structure, even in such a simple case as a linear representation of a
finite group. For example, if we consider the multiplicative action of G = {1}
on V = R3, then the topological quotient V/G is not a topological manifold (nor
a manifold with boundary). This example ruins any hope of a general result
on the existence of quotients in the category of smooth manifolds under some
reasonable hypotheses. On the contrary, in the category of differentiable spaces,
we shall show the existence of quotients with respect to actions of compact Lie
groups.

In particular, orbifolds usually have a natural structure of differentiable space.

— Infinitesimal neighbourhoods. The notion of an infinitesimal region naturally
arises everywhere in differential geometry, but it is only used informally as a
suggestive expression, due to the lack of a rigorous definition. Again, the lan-
guage of differentiable spaces allows a suitable definition: Given a point z in a
smooth manifold V, the r-th infinitesimal neighbourhood of z is the differentiable
subspace

Ur(V) = ({x},C=(V)/mith) |

e

where m,. stands for the ideal of all differentiable functions vanishing at x.

The restriction of a differentiable function f to UI(V) is just the r-th jet
of f at x, ie., jif = [f] € C(V)/m.". A systematic use of infinitesimal
neighbourhoods simplifies and clarifies the theory of jets.
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Let us show another application. The tangent bundle of an affine space A,
has a canonical trivialization TA, = A,, x V,,, where V,, is the vector space of
free vectors on A,,. Now let V be a torsionless linear connection on a smooth
manifold V. For any point x € V, the restriction of the tangent bundle TV to
UL(V) inherits a canonical trivialization (induced by parallel transport). In this
sense, we may state that (V, V) has the same infinitesimal structure as the affine
space A,,. This is a statement of the geometric meaning of a torsionless linear
connection.

In a similar way, first infinitesimal neighbourhoods U} (V) in a Riemannian
manifold (V,g) are always Euclidean, i.e., they have the same metric tangent
structure as the first infinitesimal neighbourhood of any point in a Euclidean
space. This statement captures the basic intuition about the notion of a Rie-
mannian manifold as an infinitesimally Euclidean space.

With this, let us finish our list of examples of differentiable spaces. It should
be sufficient to convince anybody of the necessity for an extension of the realm of
differential geometry to include more general objects than smooth manifolds. A
similar expansion occurred in the theory of algebraic varieties and analytic man-
ifolds with the introduction of schemes and analytic spaces in the fifties. Follow-
ing this path, Spallek introduced the category of differentiable spaces [59, 60, 62]
which contains the category of smooth manifolds as a full subcategory. More-
over, all the foundational theorems on algebras of C>-differentiable functions
are already at our disposal [26, 35, 71, 74]. In spite of this, the theory of general
differentiable spaces has not been developed to the point of providing a handy
tool in differential geometry. The aim of these notes is to develop the founda-
tions of the theory of differentiable spaces in the best-behaved case: Spallek’s
oo-standard differentiable spaces (henceforth simply differentiable spaces, since
no other kind will be considered). These foundations will be developed so as to
include the most basic tools at the same level as is standard in the theory of
schemes and analytic spaces.

We would like to thank our friend R. Faro, who always has patience to attend
to any question and to discuss it with us, and Prof. J. Munoz Masqué, who taught
us a course on rings of differentiable functions 25 years ago at the University of
Salamanca.

We dedicate these notes to Professor Juan B. Sancho Guimera, who directed
around 1970 two doctoral dissertations [35, 37, 41] on the Localization theorem
and always stressed to us its crucial importance in laying the foundations of
differential geometry.

Badajoz (Spain) Juan A. Navarro Gonzilez
November 2002 Juan B. Sancho de Salas
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Introduction

We shall develop the theory of differentiable spaces paralleling the theory of
schemes introduced by Grothendieck [17] in algebraic geometry. First we choose
the rings that should be considered as rings of differentiable functions, which
are fixed to be quotients of C>(R™) by some closed ideal a (with respect to the
Fréchet topology of uniform convergence on compact sets of functions and their
derivatives). These Fréchet algebras C*>(R™)/a are named differentiable alge-
bras', since C>(R")/a will be regarded as an algebra of differentiable functions
on the closed subset (a)y := {z € R": f(x) =0VYf € a} of R", even though this
algebra may be full of nilpotent elements. Nevertheless, when a is the ideal of
all C*>-functions vanishing on a given closed set X C R", the quotient algebra
A = C>*(R"™)/a may be identified with a ring of real valued functions on X (in
the usual set-theoretic sense), and in such a case we say that A is a reduced
differentiable algebra.

Then we replace each differentiable algebra A by a ringed space (topological
space with a sheaf of rings) Spec, A called the real spectrum of A, since it is
analogous to the prime spectrum used in algebraic geometry. Moreover, the ana-
logue of a quasi-coherent sheaf on the prime spectrum is provided in our setting
by the sheaf of modules defined by a Fréchet A-module. These ringed spaces
Spec, A define a category dual to the category of differentiable algebras, but it
has the enormous advantage of leaving room for “recollement” procedures, as
do any other kind of ringed spaces. Hence, a ringed space is said to be an affine
differentiable space if it is isomorphic to the real spectrum of some differen-
tiable algebra (the analogue of affine schemes), and differentiable spaces are
defined to be ringed spaces where every point has an open neighbourhood which
is an affine differentiable space (the analogue of schemes in algebraic geometry).
Moreover, sheaves of Fréchet modules provide the analogue of quasi-coherent
sheaves on schemes.

There has long been perceived the need for an extension of the framework of
smooth manifolds in differential geometry, and there are several definitions that
attempt to capture the intuitive concept of “non-smooth space with a differen-
tiable structure”. Over the years, some categories have appeared that are both
large enough to include smooth manifolds and some other geometric objects, and
small enough to admit a differential calculus. Therefore, the name differentiable

! Not to be confused with the notion of differentiable algebra as used in commutative
algebra, which is simply an algebra with a derivation.
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space and similar terms have been used in a number of quite different senses.
Let us discuss briefly some of them:

Spallek’s differentiable spaces. Our differentiable spaces coincide with

Spallek’s differentiable spaces of a particular type (named oo-standard);
hence these notes fit naturally into the theory and applications of such spaces
([48] ~ [51] and [59] — [66]).

Synthetic differential geometry. At the end of the sixties Lawvere [24]

proposed an axiomatic approach to the category of schemes, intended to be
used in differential geometry and named “synthetic differential geometry”.
It was in this context that C*-schemes [9, 31] appeared, providing a model
of this axiomatic theory. C>-rings are just R-algebras where the composition
f(ay, ..., a,) with any smooth function f € C*(R") is defined, satisfying all
the equations that hold between these functions; hence differentiable algebras
are C>°-rings. Then C*-ringed spaces are defined in the obvious way [9] and a
C>-ringed space Spec A is associated to any C*>°-ring A (it coincides with our
real spectrum whenever A is a differentiable algebra). Finally C*°-schemes
are introduced as C*°-ringed spaces locally isomorphic to these local building
blocks Spec A. Therefore, differentiable spaces in our sense are C*°-schemes;
but C°°-schemes lack a handy theory of sheaves of modules paralleling the
useful theory of sheaves of Fréchet modules that we shall develop in the
realm of differentiable spaces.

Real algebraic varieties of any kind are, of course, differentiable spaces. For

example, up to isomorphisms, affine real algebraic varieties in the sense of
Palais [44] are just pairs (X, A) where X is an algebraic set in R™ (closed
subset defined by some polynomial equations) and A is the algebra of all
polynomial functions X — R, so that A is just the quotient of R[xy, ..., x,,]
by the ideal of all polynomials vanishing on X. Hence any such algebraic
variety inherits a natural structure of reduced affine differentiable space. In
order to define non-affine real algebraic varieties, one introduces the sheaf
Oy of regular functions on any algebraic set X C R™:

Ox(U) = {p/q: p,q€ A, q(x)£0Vx e U} .

These ringed spaces (X, Ox) are the local building blocks of the definition
of real algebraic varieties given by Bochnak, Coste and Roy [2]. Again such
algebraic varieties inherit a natural structure of reduced differentiable space.
They consider only reduced algebraic varieties in spite of the critical role of
non-reduced spaces in any infinitesimal consideration.

Orbifolds are defined to be locally isomorphic to R" /G, where G is some finite

group [55, 69, 70]. Since such quotients of R™ are always differentiable spaces
(see theorem 11.14) any differentiable orbifold is a differentiable space in our
sense. We refer the reader to example 11.21 for a more detailed discussion
of the relation between orbifolds and differentiable spaces.

Sikorski’s differential spaces. According to Sikorski [57, 19] a differential

space is a pair (X, A) where A is a set of continuous real functions on a
topological space X such that:
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1. X has the weakest topology such that all functions in A are continuous.
2. A is defined by local conditions: any function on X locally coinciding
with functions in A belongs to A.
3.1 f1,.... fn € Aand ¢ € C(R"), then ¢(f1,..., fn) € A.
Therefore, reduced affine differentiable spaces (in our sense) are differen-
tial spaces in this sense, and reduced differentiable spaces are differential
spaces in the sense of Mostow [33, 19] which are the sheaf-theoretic version
of Sikorski’s differential spaces. But non-reduced differentiable spaces are
never differential spaces in this sense. See [33] for a comparison of the notion
of differential space in Mostow’s sense with the definitions of Smith [58] and
Chen [6, 7, 8].
Frohlicher spaces. Frohlicher and Kriegl [12, 23] defined a differential struc-
ture on a set X to be a family C of curves R — X and a family F of functions
X — R such that

F={f: X >R| foceC®(R), VeeC},
C={c:R— X| foceC=(R), VfeF}.

Hence, by definition, differentiable functions on any C>-space of Frohlicher
and Kriegl are maps X — R in the set-theoretic sense, so that non-reduced
differentiable spaces are not C>-spaces in this sense. Moreover, such a simple
reduced differentiable space as a convergent sequence with the limit point is
not a C>-space of Frohlicher.

Wiener’s differential spaces. Our concept has nothing to do with the dif-
ferential spaces introduced by Wiener [75).

Now let us briefly comment on the plan of these notes:

Chapter 1 presents the elementary theory of smooth manifolds in the spirit of
differentiable spaces, so that their connections become clear. We try to take great
care with the definitions, while omitting or at best just providing an indication
of many proofs, since they are well-known.

Chapter 2 studies differentiable algebras C>(R™)/a, where a is a closed ideal
in the usual Fréchet topology of C>(R"™). These algebras provide the building
blocks for the construction of differentiable spaces since, by definition, the al-
gebra of all differentiable functions on a certain open neighbourhood U of any
point of a differentiable space is a differentiable algebra. Note that differentiable
functions on U are not a certain kind of map U — R, since it may occur that
f? = 0 while f # 0. Then, chapter 3 introduces differentiable spaces as ringed
spaces locally modelled on differentiable algebras.

Chapter 4 is devoted to the study of some basic topological properties of dif-
ferentiable spaces, including the existence of partitions of unity and the equiva-
lence, in the affine case, between locally free sheaves of bounded rank and finitely
generated projective modules over the ring of global differentiable functions.

Chapter 5 introduces differentiable subspaces and embeddings, with special
attention to infinitesimal neighbourhoods. The main result is an embedding the-
orem for separated differentiable spaces whose topology has a countable basis.
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Chapters 6 and 8 present an interlude of functional analysis, when the in-
troduction of topological modules is unavoidable. Chapter 6 introduces locally
convex modules over a Fréchet algebra A and studies topological tensor prod-
ucts M ®4 N of these modules. Tensor products provide the basic tool for the
theorem of existence of finite direct products and fibred products in the category
of differentiable spaces, which is the main result of chapter 7. In particular, we
have arbitrary finite intersections of differentiable subspaces and may define the
fibre of any morphism of differentiable spaces over a subspace or a point.

In chapter 8 we study modules of fractions S~'M (see [35, 52]), including the
Localization theorem for Fréchet modules. Modules of fractions are used in chap-
ter 9 to study finite morphisms. The main result, analogous to Zariski’s main
theorem for algebraic varieties, states that a morphism of differentiable algebras
A — B is finite if and only if Spec, B — Spec, A is a closed separated mor-
phism with finite fibres of bounded degree, which is essentially a reformulation
of Malgrange’s preparation theorem [26].

In chapter 10 we use topological modules to introduce the module of relative
differentials /4 for any morphism of differentiable algebras A — B, and we
study its properties, the main reference being [35]. These modules provide the
basic tool for a differential calculus in the realm of differentiable spaces. We
use them to define the sheaf of relative differentials {2x,s for any morphism of
differentiable spaces X — S, and to study smooth morphisms. The main re-
sult is the characterization, when the fibres are topological manifolds, of smooth
morphisms over a reduced space as open maps with a locally free sheaf of rela-
tive differentials. In this chapter we also introduce formally smooth spaces and
prove that a differentiable space X is formally smooth if and only if it is locally
isomorphic to the Whitney space of a closed set in R".

In the last chapter 11 we study quotients of smooth manifolds by compact
Lie groups of transformations, which frequently are not smooth manifolds. We
show that Schwarz’s theorem [56] essentially states that such quotients have
a structure of differentiable space, and study a natural stratification. We also
briefly consider differentiable groups.

Finally we present two appendices. In the first one we study sheaves of Fréchet
modules. For the sake of simplicity, in these notes we have deliberately avoided
any topological structure on the sheaves that we introduce along the different
chapters. Nevertheless, our sheaves typically have a natural topological structure,
and the systematic use of sheaves of Fréchet modules greatly clarifies the theory,
enabling us to restate some messy results with a more natural language and
a more familiar aspect. In particular we define the inverse image of a sheaf of
Fréchet modules.

In appendix B we introduce the space of r-jets of morphisms X — Y, assum-
ing that X is formally smooth. Since the r-jet of a morphism (or a function, a
section, etc.) at a point x is just the restriction to the r-th infinitesimal neigh-
bourhood of x, the theory of jets naturally involves non-reduced spaces. This
appendix provides an example of the systematic use of the techniques developed
in these notes, with a massive utilization of non-reduced differentiable spaces.
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As to background, the following are prerequisite:

Commutative algebra: Tensor products, localization (modules of fractions), and
completions [1].

Functional analysis: Fréchet spaces, Fréchet algebras, and topological tensor
products [16, 18, 27, 29].

Sheaf theory: Basic operations with sheaves, and flabby sheaves [15].

Ideals of differentiable functions: Spectral synthesis of closed ideals , Whitney's
ideals, Borel's theorem, Malgrange’s preparation theorem, and Schwarz’s
theorem (26, 45, 71].

Differential geometry: Smooth manifolds, Lie groups, and actions of compact
groups on manifolds [4, 73].






1 Differentiable Manifolds

The notion of smooth manifold, as well as those of analytic manifold and scheme,
may be expressed appropriately in the language of ringed spaces. In this chapter
we shall use this language. reformulating the traditional concepts of smooth
manifold, differentiable map, submanifold, etc. Even in this limited context, the
use of ringed spaces already presents some conceptual advantages. For example,
the artificial concept of “maximal atlas” disappears in the definition of smooth
manifold and no coordinate systems are required in the definition of differentiable
map.

1.1 Smooth Manifolds

Definitions. Let Cx be the sheaf of real valued continuous functions on a topo-
logical space X. Subsheaves of R-algebras of Cx are said to be sheaves of
continuous functions on X. A reduced ringed space is a pair (X,0x)
where X is a topological space and Ox is a sheaf of continuous functions on X
(i.e., Ox (U) is a subalgebra of the algebra C(U,R) of all real valued continuous
functions on U containing all constant functions, for any open set U C X).

Morphisms of reduced ringed spaces ¢: (Y, Oy ) — (X, Ox) are defined
to be continuous maps ¢: Y — X such that p* f := fop € Oy (¢ 'U) whenever
f € Ox(U), so that ¢ induces a morphism of sheaves

e*: Ox — ¢.Oy.

A morphism ¢ is said to be an isomorphism if there exists a morphism
V: (X, O0x) — (Y.Oy) such that po = Id and 1) o p = Id: that is to say, if ¢
is a homeomorphism and ¢*: Ox — ¢.Oy is an isomorphism of sheaves.

The following properties are obvious:

1. Let (X,0Ox) be a reduced ringed space. If U is an open set in X, then
(U,Ox|y) is a reduced ringed space and the inclusion U < X is a morphism
of reduced ringed spaces.

2. Compositions of morphisms of reduced ringed spaces also are morphisms of
reduced ringed spaces.

3. Let (X,Ox), (Y, Oy) be reduced ringed spaces and let {U;} be an open cover
of Y. A map ¢: Y — X is a morphism of reduced ringed spaces if and only
if so is the restriction @[y, : U, — X for any index .



