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Preface

Fundamental Programming with Fortran 77 is the third book to appear in a series
that includes Fundamental Programming and Fundamental Programming with Pascal.
Our purpose for this book is to introduce Fortran 77 within the setting of a true
course in programming. Besides giving students rudimentary programming skills
and a knowledge of Fortran 77, such a course should leave students with a basic
understanding of the science of programming.

The subtitle of our book, An Engineering and Science Approach, captures our
belief that programming should be taught like other engineering and science
courses with a primary emphasis on design and general scientific principles.
Just as we would not hire an engineer to build a bridge who knew only the tools
and structures used in bridge construction but nothing about bridge design, so
we would not trust a programmer who knew only the statements and syntax of
Fortran 77 but nothing about program design. Not only is an understanding of
design issues crucial to safe and reliable products in both instances, but a knowl-
edge of design methodologies provides a thorough understanding of the disci-
pline in question. Most Fortran books do not provide this experience.

This book embodies an approach that is consistent with our responsibilities
and objectives as computer scientists and computer engineers. Here, we first
present the science of computing and the design issues fundamental to pro-
gramming in sufficient depth. Then we describe how to implement well-designed
and analyzed programs in Fortran 77. Students may not learn as many of the
individual details of Fortran 77 in one term this way, but they will be markedly
better programmers, and they will have the proper foundation for further indi-
vidual study of programming.

We believe strongly in this method of instruction. Consider giving auto-
mechanics’ students a short course in the use of mechanics’ tools, showing them
how the tools work and having them practice tightening and loosening a few
bolts. Then, a year later, give these same students a defective engine and say,
“Fix it.”” Impossible? Of course. However, we would be guilty of a similar fault if
we only presented the tools (Fortran statements) in this book without at the same
time demonstrating the logical processes necessary for turning problems into
well-designed programs. Thus, we emphasize program design, analysis, and
verification as the most important aspects of programming. There are two pri-
mary benefits to this approach for the engineering, math, science, and business
students who need a course in Fortran.
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PREFACE

1. Engineering Design. A key issue in all engineering curricula is design.
ABET, the Accreditation Board for Engineering and Technology, requires a sub-
stantial design component in all engineering disciplines. The emphasis of this
book is approximately three-quarters program design (software engineering)
and one-quarter Fortran implementation.

2. Advanced Study. A course taught with this book as its basis gives students a
background that makes advanced study easier. While students may need to learn
a different programming language (e.g., Pascal) as a prerequisite for advanced
computer science courses, they will not need to relearn the issues fundamental
to programming, making this transition to upper-level courses much easier. They
can, in fact, usually learn the new language with little difficulty.

In determining the content of this book we had a definite pedagogical model in
mind. This model stemmed from our realization a number of years ago that
when we asked students to design a substantial program independently, many
would return with a program consisting primarily of one or two large routines
with little modularity; their programs were difficult to read and difficult to mod-
ify. Furthermore, when we asked the students simple questions about the effi-
ciency or correctness of their programs, they were often at a loss for answers.
This was true in spite of our efforts at teaching structured design, correctness,
and efficiency of programs. What had gone wrong? The answer was surprisingly
simple: we weren’t practicing what we preached. Traditional textbooks used in
the introductory courses either did not cover these topics well or they covered
them in isolated sections of the text. Furthermore, subroutines and functions
were normally introduced late in these textbooks, almost as afterthoughts, as the
“right way” to program. Students were mistakenly led to believe that subroutines
and functions were difficult topics of more bother than they were worth; it’s no
wonder that they were avoiding their use later. In designing our book, then, our
philosophy was to introduce programming in a way that would reinforce proper
programming style and habits from the start. We do this as follows:

1. Case Studies. The central pedagogical tools we use are case studies. These
are programming problems for which complete, working programs are designed
in a top-down, structured fashion as new programming concepts are introduced.
The problem of exploring new concepts in isolation from practical experience is
thus avoided. In all there are 51 complete case studies in the book. The case stud-
ies do not require mathematics beyond precalculus. Also, the case studies have
been chosen to illustrate general program-design techniques.

2. Use of a Pseudolanguage. The solutions to the case studies are developed in
a structured, top-down fashion in a simple pseudolanguage. This allows us to
concentrate on programming, rather than the details of Fortran 77, as the pro-
grams are developed. Students should learn that program development in a
pseudolanguage is a completely separate process (now widely practiced in in-
dustry) from the implementation of the resulting program in some particular
programming language (in this case Fortran 77). Each of the programs we design
in the pseudolanguage is translated into a complete, working Fortran 77 pro-
gram in a later section, where the new details of the Fortran 77 language are dis-
cussed separately from the problems involved in the program design.

PHILOSOPHY
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3. Immediate Introduction of Subroutines and Functions. From the first case
study on we teach that programs are collections of short, well-defined subrou-
tines and functions, which are organized and called from an initial procedure
(main program). The crucial concepts of subroutines, functions, parameters,
and modular program design are thus ingrained into the habits and practice of
students from the beginning. Students learn these topics without any problem,
and their later programming practices are greatly enhanced as a result.

4. Inclusion of Program Correctness. As part of each case study we include an
integrated discussion of program correctness. This starts out quite simply with
the early case studies but eventually includes the notions of a program walk-
through, semiformal verification steps (particularly for loops), program testing,
selection of proper test data, robustness, and debugging techniques. Students
receive a practical knowledge of the concepts of program verification.

5. Integrated Discussion of Program Efficiency. The execution time efficiency
(time complexity) and storage space requirements (space complexity) of the pro-
grams are discussed for each case study as appropriate. Time complexity is de-
termined by doing a count of the number of statements executed, and space
complexity is determined by counting the number of storage cells used. These
simple, intuitive approaches are accurate and practical. Students continuing on
in computer science will have a basis for advanced study of these topics; those
not pursuing the subject after this course will understand practical methods for
determining program efficiency.

All chapters except the first follow a specific format designed to implement our
philosophy. Each begins with three major sections: Getting Acquainted, In Ret-
rospect, and The Challenge. In the Getting Acquainted section, simple case
studies introducing the new programming concepts of the chapter are studied.
All of these case studies should be covered because the subroutines and func-
tions developed there are often used in later case studies. In Retrospect summa-
rizes these new concepts and provides a place to which to turn for review. The
Challenge presents more challenging case studies involving the new concepts of
the chapter. The Fortran implementation portions of each chapter mirror the pre-
vious sections exactly. In the Getting Acquainted with Fortran, Fortran in Retro-
spect, and The Challenge in Fortran sections, we translate into Fortran 77 and
review the pseudolanguage programs of the case studies. All Fortran programs
have been written to conform to the Fortran 77 standard.

Appendix A, Other Fortran Features, provides a concise reference manual
for advanced Fortran 77 topics not covered in the text. Eight groups of exercises
are integrated into each chapter, and answers to some of these are found in ap-
pendix B, Answers to Selected Exercises. The Fortran programs were tested on a
VAX 11/750 computer using the Fortran 77 compiler developed by S. I. Feldman
andP. J. Weinberger.

The first chapter of the text is different from the other chapters; it describes a
model computer and the simple operations that a computer can perform, provid-
ing the motivation for the rest of the book by answering the question, “Why
must we write programs?”’ It was written so that students could read it on their
own during the first week of class as the instructor tended to other matters (such



PREFACE

as describing how to use the computer). A complete, simple Fortran program is
given in the exercises at the end of the chapter. The students can type this pro-
gram in and run it as their first assignment to help acquaint them with their com-
puter terminal and text editor.

We hope that you will find this book as easy and pleasant to use as we have
found its working version. We would be delighted to receive any comments you

have, and corrections will be gratefully accepted and included in future print-
ings or editions.

Special thanks go to Ruth Barton, Michigan State University, and Donna
McClelland, Montana State University, who contributed their expertise to this
book’s development. Thanks are also due to the teaching assistants who used
various forms of the Fortran portion of this book in teaching introductory For-
tran courses at Montana State University: Mike Turner, Brian Thome, Bob Wall,
and Jim Hill.

We would also like to thank those people who earlier reviewed the Funda-
mental Programming material that appears in this book: Gabriel Barta (Univer-
sity of New Hampshire); Rodney M. Bates (Kansas State University); Leland L.
Beck (San Diego State University); Don Cartlidge (New Mexico State University);
Cecelia R. Daly (University of Nebraska); Nancy Duffrin (SUNY at Stony Brook);
Arthur C. Fleck (University of lowa); Tamar E. Granor (University of Pennsyl-
vania); James L. Hein (Portland State University); Rachelle Heller (University of
Maryland); Leon Levine (University of California, Los Angeles); Gene Mahalko
(University of North Dakota); Lawrence H. Miller (University of California, Los
Angeles); Ralph Moore (Modesto Junior College, California); Keith R. Pierce
(University of Minnesota); Alan L. Schwartz (University of Missouri, St. Louis);
Robert F. Simmons (University of Texas, Austin); and Stephen F. Weiss (Univer-
sity of North Carolina, Chapel Hill).

Finally, Cheryl Ross, in addition to her responsibilities as wife and mother,
cheerfully carried out the job of typing the manuscript.

IN GRATITUDE
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To the Student

This book has been designed with you in mind. We have given numerous ex-
amples of all important programming concepts and provided exercises to re-
inforce your learning. If you study this material carefully you will have a sound
understanding of the programming process. For example, it may well be that the
most useful thing that a future engineer or scientist gains from this book is not a
knowledge of Fortran 77 but an understanding of program correctness and effi-
ciency, since the successful design of a program by members of a team or the
speed of a particular software component of a system may be crucial in later
projects. Similarly, business students may later find that they are responsible
for decisions about the purchase or use of programs, and a practical, working
knowledge of the concepts of program design, efficiency, and correctness may be
far more important than actual programming skills. In short, these topics are of
concern not only to computer professionals but to all who will be involved with
computers in the future.

For highlighting concepts in the book we sometimes print words in italics or
boldface type. Italics are reserved for phrases we want to emphasize and for
terms that are being defined. Bold print is used in our program designs to mark
keywords that are important. These uses of italic and boldface type will become
clear as you read the book.

Whether you are a computer science student or a student from another dis-
cipline, this book will be useful to you now and later as a reference. One warn-
ing: if you have learned to program on your own, be careful! We have seen many
sad cases of students with previous programming experience who started well
but ended up doing poorly because they never shook off their earlier bad habits.
If you use this book you will learn to be a competent programmer. We hope you
enjoy learning to program.

J. Denbigh Starkey
Rockford J. Ross
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