. DENBIGH STARKEY
ROCKFORD J. ROSS

[P72 9062538 fn
So/s |

Fundamental Programming
With FORTRAN 77

A Science and Engineering Approach

NG

J. Denbigh Starkey
Rockford J. Ross

Montana State University

Wi

i

E9062538

West Publishing Company
St. Paul - New York - Los Angeles - San Francisco

To our parents
Richard and Mary Starkey
Jim and Dorothy Ross

Production Management: Bookman Productions”

Cover Photography: Michel Tcherevkoff for Alle;ghany
Cover Design: Hal Lockwood, Bookman Productions
Copyeditor: Janet Hunter

Compositor: G&S Typesetters, Inc. : ’

Several trademarks and/or service marks appear in this
book. The following companies are the owners of the
trademarks and/or service marks following their names—
Apple Computer, Inc.: Apple; Commodore International
Ltd.: Commodore; Digital Equipment Corporation: DEC;
Hewlett-Packard Company: Hewlett-Packard; International
Business Machines Corporation: IBM; Tandy Corporation:
TRS-80.

COPYRIGHT © 1987 By WEST PUBLISHING COMPANY
50 W. Kellogg Boulevard
P.O. Box 64526
St. Paul, MN 55164-1003

All rights reserved

Printed in the United States of America
Library of Congress Cataloging in Publication Data

Starkey, J. Denbigh.
Fundamental programming with Fortran 77.

Includes index.)

1. FORTRAN (Computer program language) I. Ross,
Rockford. II. Title.
QA76.73.F25577 1987 005.26 ~ 86-18899
ISBN 0-314-77805-5

Preface

Fundamental Programming with Fortran 77 is the third book to appear in a series
that includes Fundamental Programming and Fundamental Programming with Pascal.
Our purpose for this book is to introduce Fortran 77 within the setting of a true
course in programming. Besides giving students rudimentary programming skills
and a knowledge of Fortran 77, such a course should leave students with a basic
understanding of the science of programming.

The subtitle of our book, An Engineering and Science Approach, captures our
belief that programming should be taught like other engineering and science
courses with a primary emphasis on design and general scientific principles.
Just as we would not hire an engineer to build a bridge who knew only the tools
and structures used in bridge construction but nothing about bridge design, so
we would not trust a programmer who knew only the statements and syntax of
Fortran 77 but nothing about program design. Not only is an understanding of
design issues crucial to safe and reliable products in both instances, but a knowl-
edge of design methodologies provides a thorough understanding of the disci-
pline in question. Most Fortran books do not provide this experience.

This book embodies an approach that is consistent with our responsibilities
and objectives as computer scientists and computer engineers. Here, we first
present the science of computing and the design issues fundamental to pro-
gramming in sufficient depth. Then we describe how to implement well-designed
and analyzed programs in Fortran 77. Students may not learn as many of the
individual details of Fortran 77 in one term this way, but they will be markedly
better programmers, and they will have the proper foundation for further indi-
vidual study of programming.

We believe strongly in this method of instruction. Consider giving auto-
mechanics’ students a short course in the use of mechanics’ tools, showing them
how the tools work and having them practice tightening and loosening a few
bolts. Then, a year later, give these same students a defective engine and say,
“Fix it.”” Impossible? Of course. However, we would be guilty of a similar fault if
we only presented the tools (Fortran statements) in this book without at the same
time demonstrating the logical processes necessary for turning problems into
well-designed programs. Thus, we emphasize program design, analysis, and
verification as the most important aspects of programming. There are two pri-
mary benefits to this approach for the engineering, math, science, and business
students who need a course in Fortran.

Xiv

PREFACE

1. Engineering Design. A key issue in all engineering curricula is design.
ABET, the Accreditation Board for Engineering and Technology, requires a sub-
stantial design component in all engineering disciplines. The emphasis of this
book is approximately three-quarters program design (software engineering)
and one-quarter Fortran implementation.

2. Advanced Study. A course taught with this book as its basis gives students a
background that makes advanced study easier. While students may need to learn
a different programming language (e.g., Pascal) as a prerequisite for advanced
computer science courses, they will not need to relearn the issues fundamental
to programming, making this transition to upper-level courses much easier. They
can, in fact, usually learn the new language with little difficulty.

In determining the content of this book we had a definite pedagogical model in
mind. This model stemmed from our realization a number of years ago that
when we asked students to design a substantial program independently, many
would return with a program consisting primarily of one or two large routines
with little modularity; their programs were difficult to read and difficult to mod-
ify. Furthermore, when we asked the students simple questions about the effi-
ciency or correctness of their programs, they were often at a loss for answers.
This was true in spite of our efforts at teaching structured design, correctness,
and efficiency of programs. What had gone wrong? The answer was surprisingly
simple: we weren’t practicing what we preached. Traditional textbooks used in
the introductory courses either did not cover these topics well or they covered
them in isolated sections of the text. Furthermore, subroutines and functions
were normally introduced late in these textbooks, almost as afterthoughts, as the
“right way” to program. Students were mistakenly led to believe that subroutines
and functions were difficult topics of more bother than they were worth; it’s no
wonder that they were avoiding their use later. In designing our book, then, our
philosophy was to introduce programming in a way that would reinforce proper
programming style and habits from the start. We do this as follows:

1. Case Studies. The central pedagogical tools we use are case studies. These
are programming problems for which complete, working programs are designed
in a top-down, structured fashion as new programming concepts are introduced.
The problem of exploring new concepts in isolation from practical experience is
thus avoided. In all there are 51 complete case studies in the book. The case stud-
ies do not require mathematics beyond precalculus. Also, the case studies have
been chosen to illustrate general program-design techniques.

2. Use of a Pseudolanguage. The solutions to the case studies are developed in
a structured, top-down fashion in a simple pseudolanguage. This allows us to
concentrate on programming, rather than the details of Fortran 77, as the pro-
grams are developed. Students should learn that program development in a
pseudolanguage is a completely separate process (now widely practiced in in-
dustry) from the implementation of the resulting program in some particular
programming language (in this case Fortran 77). Each of the programs we design
in the pseudolanguage is translated into a complete, working Fortran 77 pro-
gram in a later section, where the new details of the Fortran 77 language are dis-
cussed separately from the problems involved in the program design.

PHILOSOPHY

XV

XVi

ORGANIZATION

PREFACE

3. Immediate Introduction of Subroutines and Functions. From the first case
study on we teach that programs are collections of short, well-defined subrou-
tines and functions, which are organized and called from an initial procedure
(main program). The crucial concepts of subroutines, functions, parameters,
and modular program design are thus ingrained into the habits and practice of
students from the beginning. Students learn these topics without any problem,
and their later programming practices are greatly enhanced as a result.

4. Inclusion of Program Correctness. As part of each case study we include an
integrated discussion of program correctness. This starts out quite simply with
the early case studies but eventually includes the notions of a program walk-
through, semiformal verification steps (particularly for loops), program testing,
selection of proper test data, robustness, and debugging techniques. Students
receive a practical knowledge of the concepts of program verification.

5. Integrated Discussion of Program Efficiency. The execution time efficiency
(time complexity) and storage space requirements (space complexity) of the pro-
grams are discussed for each case study as appropriate. Time complexity is de-
termined by doing a count of the number of statements executed, and space
complexity is determined by counting the number of storage cells used. These
simple, intuitive approaches are accurate and practical. Students continuing on
in computer science will have a basis for advanced study of these topics; those
not pursuing the subject after this course will understand practical methods for
determining program efficiency.

All chapters except the first follow a specific format designed to implement our
philosophy. Each begins with three major sections: Getting Acquainted, In Ret-
rospect, and The Challenge. In the Getting Acquainted section, simple case
studies introducing the new programming concepts of the chapter are studied.
All of these case studies should be covered because the subroutines and func-
tions developed there are often used in later case studies. In Retrospect summa-
rizes these new concepts and provides a place to which to turn for review. The
Challenge presents more challenging case studies involving the new concepts of
the chapter. The Fortran implementation portions of each chapter mirror the pre-
vious sections exactly. In the Getting Acquainted with Fortran, Fortran in Retro-
spect, and The Challenge in Fortran sections, we translate into Fortran 77 and
review the pseudolanguage programs of the case studies. All Fortran programs
have been written to conform to the Fortran 77 standard.

Appendix A, Other Fortran Features, provides a concise reference manual
for advanced Fortran 77 topics not covered in the text. Eight groups of exercises
are integrated into each chapter, and answers to some of these are found in ap-
pendix B, Answers to Selected Exercises. The Fortran programs were tested on a
VAX 11/750 computer using the Fortran 77 compiler developed by S. I. Feldman
andP. J. Weinberger.

The first chapter of the text is different from the other chapters; it describes a
model computer and the simple operations that a computer can perform, provid-
ing the motivation for the rest of the book by answering the question, “Why
must we write programs?”’ It was written so that students could read it on their
own during the first week of class as the instructor tended to other matters (such

PREFACE

as describing how to use the computer). A complete, simple Fortran program is
given in the exercises at the end of the chapter. The students can type this pro-
gram in and run it as their first assignment to help acquaint them with their com-
puter terminal and text editor.

We hope that you will find this book as easy and pleasant to use as we have
found its working version. We would be delighted to receive any comments you

have, and corrections will be gratefully accepted and included in future print-
ings or editions.

Special thanks go to Ruth Barton, Michigan State University, and Donna
McClelland, Montana State University, who contributed their expertise to this
book’s development. Thanks are also due to the teaching assistants who used
various forms of the Fortran portion of this book in teaching introductory For-
tran courses at Montana State University: Mike Turner, Brian Thome, Bob Wall,
and Jim Hill.

We would also like to thank those people who earlier reviewed the Funda-
mental Programming material that appears in this book: Gabriel Barta (Univer-
sity of New Hampshire); Rodney M. Bates (Kansas State University); Leland L.
Beck (San Diego State University); Don Cartlidge (New Mexico State University);
Cecelia R. Daly (University of Nebraska); Nancy Duffrin (SUNY at Stony Brook);
Arthur C. Fleck (University of lowa); Tamar E. Granor (University of Pennsyl-
vania); James L. Hein (Portland State University); Rachelle Heller (University of
Maryland); Leon Levine (University of California, Los Angeles); Gene Mahalko
(University of North Dakota); Lawrence H. Miller (University of California, Los
Angeles); Ralph Moore (Modesto Junior College, California); Keith R. Pierce
(University of Minnesota); Alan L. Schwartz (University of Missouri, St. Louis);
Robert F. Simmons (University of Texas, Austin); and Stephen F. Weiss (Univer-
sity of North Carolina, Chapel Hill).

Finally, Cheryl Ross, in addition to her responsibilities as wife and mother,
cheerfully carried out the job of typing the manuscript.

IN GRATITUDE

XVii

To the Student

This book has been designed with you in mind. We have given numerous ex-
amples of all important programming concepts and provided exercises to re-
inforce your learning. If you study this material carefully you will have a sound
understanding of the programming process. For example, it may well be that the
most useful thing that a future engineer or scientist gains from this book is not a
knowledge of Fortran 77 but an understanding of program correctness and effi-
ciency, since the successful design of a program by members of a team or the
speed of a particular software component of a system may be crucial in later
projects. Similarly, business students may later find that they are responsible
for decisions about the purchase or use of programs, and a practical, working
knowledge of the concepts of program design, efficiency, and correctness may be
far more important than actual programming skills. In short, these topics are of
concern not only to computer professionals but to all who will be involved with
computers in the future.

For highlighting concepts in the book we sometimes print words in italics or
boldface type. Italics are reserved for phrases we want to emphasize and for
terms that are being defined. Bold print is used in our program designs to mark
keywords that are important. These uses of italic and boldface type will become
clear as you read the book.

Whether you are a computer science student or a student from another dis-
cipline, this book will be useful to you now and later as a reference. One warn-
ing: if you have learned to program on your own, be careful! We have seen many
sad cases of students with previous programming experience who started well
but ended up doing poorly because they never shook off their earlier bad habits.
If you use this book you will learn to be a competent programmer. We hope you
enjoy learning to program.

J. Denbigh Starkey
Rockford J. Ross

XViii

Contents

Preface xiv
To the Student xviii

1 Getting Ready £

...

1.1 BACKGROUND 2
1.2 THE MODEL COMPUTER 3
The Processor 4
The Store 8
The Processor—Comparison Unit 16
The Input and Output Devices 26
Summary of the Model Computer 31
1.3 THE PROGRAMMING PROCESS 31
Programs 32
Functions and Procedures 32
The Programming Process 36
1.4 EXERCISES 37
For Review 37
1.5 FORTRAN IMPLEMENTATION 39
Declaring Variables in Fortran 40
Assignment Statements in Fortran 42
Fortran Arithmetic Expressions and Operations 43
Inputting Values in Fortran—The READ Statement 46
Outputting Values in Fortran—The wRITE Statement 48
An Example Fortran Procedure 48
1.6 FORTRAN EXERCISES 49

2 SimplePrograms ...l 53

2.1 GETTING ACQUAINTED 54
Case Study 2.1: Compute the Average of Three Numbers 54
Case Study 2.2: Area of a Rectangle 65
Case Study 2.3: Swap Two Values 68

Vi

2.2

2.3

2.4

2.5
2.6

2.7

2.8

2.9

2.10

IN RETROSPECT 75
Top-Down Program Design 75
Functions and Procedures 75
Program Structure 78
Parameters 78
Local Variables 86
Program Verification 86
Batch versus Interactive Programming 87
WARMUP EXERCISES 88
For Review 88
A Deeper Look 89
To Program 91
THE CHALLENGE 91
Case Study 2.4: Computing Simple Interest 92

Case Study 2.5: Computing Compound Interest 94

Case Study 2.6: Computing the Area of a Trapezoid
WORKING OUT 98
GETTING ACQUAINTED WITH FORTRAN 100
Case Study 2.1 in Fortran 101
Case Study 2.2 in Fortran 104
Case Study 2.3 in Fortran 105
FORTRAN IN RETROSPECT 107
Fortran Program Structure 107
Fortran Initial Procedures 107
Fortran Functions 109
Fortran Procedures 111
Fortran Variables—Some Problems 113
Fortran Static Variables 115
Choosing Fortran Variable Names 116
Declaring Function Names in Fortran 116
Fortran Parameters 116
Integer and Real Numbers in Fortran 119
Testing Fortran Programs 121 -
WARMING UP TO FORTRAN 121
For Review 121
A Deeper Look 122
To Program 122
THE CHALLENGE IN FORTRAN 123
Case Study 2.4 in Fortran 123
Case Study 2.5 in Fortran 124
Case Study 2.6 in Fortran 125
WORKING OUT IN FORTRAN 126

95

CONTENTS

Making Decisions

GETTING ACQUAINTED 128
Case Study 3.1: Find the Larger of Two Values 128
Case Study 3.2: Compute the Largest of Three Values

131

CONTENTS

Case Study 3.3: Sort Three Integers 140
Case Study 3.4: Assigning Student Grades 143
Case Study 3.5: Compute Ticket Costs 147

3.2 IN RETROSPECT 152
The If Statement 152
The Case Statement 155
Program Correctness 157
3.3 WARMUP EXERCISES 159
For Review 159
A Deeper Look 161
To Program 162
3.4 THE CHALLENGE 163
Case Study 3.6: Factorial 163
Case Study 3.7: Fibonacci Numbers 176
Case Study 3.8: Quadratic Equations 179
3.5 WORKING OUT 186
3.6 GETTING ACQUAINTED WITH FORTRAN 188
Case Study 3.1 in Fortran 188
Case Study 3.2 in Fortran 189
Case Study 3.3 in Fortran 194
Case Study 3.4 in Fortran 196
Case Study 3.5 in Fortran 198
3.7 FORTRAN IN RETROSPECT 201
The 1F-THEN and IF-THEN-ELSE Statements in Fortran 201
The 1¥ Statement with ELserr Clauses in Fortran 203
The Case Statement in Fortran 204
Creating Pleasing Output—the Fortran FORMAT Statement 206
Assertions in Fortran 227
Portability 227
3.8 WARMING UP TO FORTRAN 228
For Review 228
A Deeper Look 230
To Program 230
3.9 THE CHALLENGE IN FORTRAN 231
Case Study 3.6 in Fortran 231
Case Study 3.7 in Fortran 232
Case Study 3.8 in Fortran 232
3.10 WORKING OUT IN FORTRAN 233
4 tteration ... 235
4.1 GETTING ACQUAINTED 236
Case Study 4.1: Sum a Series of Integers 236
Case Study 4.2: Sum the First n Even Integers 249
Case Study 4.3: Computing Average Scores 257
Case Study 4.4: Accumulating Interest 262
4.2 IN RETROSPECT 269

Loops 269

Vil

viii

4.3

4.4

4.5
4.6

4.7

4.8

4.9

4.10

Common Loop Operations 275
Program Efficiency 276
Determining Loop Correctness 293
WARMUP EXERCISES 307
For Review 307
A Deeper Look 308
To Program 312
THE CHALLENGE 313
Case Study 4.5: Factorial Revisited 313
Case Study 4.6: Fibonacci Revisited 316
WORKING OUT 319
GETTING ACQUAINTED WITH FORTRAN 321
Case Study 4.1 in Fortran 321
Case Study 4.2 in Fortran 326
Case Study 4.3 in Fortran 329
Case Study 4.4 in Fortran 331
FORTRAN IN RETROSPECT 333
Implementation of the General While Loop in Fortran
Implementation of the While Moredata Loop in Fortran
The Fortran po Loop 339
Implementation of the Until Loop in Fortran 341
The Fortran CONTINUE Statement 345
The Fortran Go To Statement 346
Implementation of Assert Statements in Fortran 347
Summary of Fortran Loops 347
WARMING UP TO FORTRAN 348
For Review 348
A Deeper Look 349
To Program 350
THE CHALLENGE IN FORTRAN 350
Case Study 4.5 in Fortran 350
Case Study 4.6 in Fortran 351
WORKING OUT IN FORTRAN 352

333
337

CONTENTS

5.1

5.2

5.3

Maintaining Simple Lists: Arrays of One
Dimension

GETTING ACQUAINTED 356
Case Study 5.1: Printing a List Forwards and Backwards
Case Study 5.2: Computing Temperature Statistics 371
Case Study 5.3: Computing Test Statistics 374
IN RETROSPECT 383

Simple Lists 383

The 1-D Array 384
WARMUP EXERCISES 389

For Review 389

A Deeper Look 390

To Program 390

356

CONTENTS

5.4

5.5
5.6

5.7

THE CHALLENGE 391
Case Study 5.4: Computing the Dot Product of Two Vectors
Case Study 5.5: Searching an Unordered List 394
Case Study 5.6: Searching an Ordered List 400
Case Study 5.7: Sorting a List of Values 409
Case Study 5.8: Sorting a List of Values Faster
WORKING OUT 436
GETTING ACQUAINTED WITH FORTRAN
Case Study 5.1 in Fortran 438
Case Study 5.2 in Fortran 443
Case Study 5.3 in Fortran =~ 448
FORTRAN IN RETROSPECT 452
1-D Arrays in Fortran 452
Passing 1-D Arrays as Parameters in Fortran
Fortran Parameters—a Second Look 454
Implied Loops with Fortran READ and WRITE Statements
Named Constants in Fortran—The PARAMETER Statement

417

438

453

391

455
457

Dynamic Arrays in Fortran 458
5.8 WARMING UP TO FORTRAN 458
For Review 458
A Deeper Look 459
To Program 459
5.9 THE CHALLENGE IN FORTRAN 460
Case Study 5.4 in Fortran 460
Case Study 5.5 in Fortran 461
Case Study 5.6 in Fortran 463
Case Study 5.7 in Fortran 465
Case Study 5.8 in Fortran 467
5.10 WORKING OUT IN FORTRAN 467
O CharacterDatac.ooeiuiiiiiiniiiiiiiieaeennenn. 469
6.1 GETTING ACQUAINTED 470

6.2

6.3

Case Study 6.1: Input and Output of Strings
Case Study 6.2: Counting Vowels 478
Case Study 6.3: Reading and Printing a List of Names
IN RETROSPECT 485

471

Character Variables and Constants 486
String Variables and Constants 487
String Operations 488

Input and Output of String Data 490

String Comparisons 491

Efficiency of String Handling Programs

Correctness of String Handling Programs
WARMUP EXERCISES 492

For Review 492

A Deeper Look 492

To Program 493

491
492

481

CONTENTS

6.4 THE CHALLENGE 494
Case Study 6.4: Sorting Names 494
Case Study 6.5: Blank Compression 495
Case Study 6.6: A Simple Word Processor 503
6.5 WORKING OUT 508
6.6 GETTING ACQUAINTED WITH FORTRAN 510
Case Study 6.1 in Fortran 511
Case Study 6.2 in Fortran 512
Case Study 6.3 in Fortran 517
6.7 FORTRAN IN RETROSPECT 519
Declaring Character Strings in Fortran 520
Assigning Strings to Variables of Type CHARACTER 521

Character String Parameters in Fortran 522
Inputting Character Strings in Fortran 523
Processing Text a Character at a Time in Fortran 524

Fortran String Operations 525
Variable Length Strings in Fortran 531
The Fortran sTor and RETURN Statements 532
The Fortran save Statement 532
The Fortran pATA Statement 533
6.8 WARMING UP TO FORTRAN 534
For Review 534
A Deeper Look 535
To Program 535
6.9 THE CHALLENGE IN FORTRAN 536
Case Study 6.4 in Fortran 536
Case Study 6.5 in Fortran 539
Case Study 6.6 in Fortran 543
6.10 WORKING OUT IN FORTRAN 547

7 Multi-Dimensioned Arrays

7.1 GETTING ACQUAINTED 550
Case Study 7.1: Inputting and Outputting a Table 550
Case Study 7.2: Operations on Tables 555
7.2 IN RETROSPECT 561
2-D Arrays 561
Arrays with More than Two Dimensions 562
7.3 WARMUP EXERCISES 563
For Review 563
A Deeper Look 564
To Program 565
7.4 THE CHALLENGE 566
Case Study 7.3: Multiplying a Matrix and a Vector 566
Case Study 7.4: Multiplying Two Matrices 570
7.5 WORKING OUT 574

CONTENTS

7.6 GETTING ACQUAINTED WITH FORTRAN 575
Case Study 7.1 in Fortran 575
Case Study 7.2 in Fortran 578
7.7 FORTRAN IN RETROSPECT 580
Passing 2-D Arrays as Parameters in Fortran 581
Input and Output of 2-D Arrays in Fortran 582
Arrays of Higher Dimension 583
7.8 WARMING UP TO FORTRAN 583
For Review 583
A Deeper Look 584
To Program 584
7.9 THE CHALLENGE IN FORTRAN 584
Case Study 7.3 in Fortran 584
Case Study 7.4 in Fortran 586
7.10 WORKING OUT IN FORTRAN 588

8 RECOIdS ..o

8.1 GETTING ACQUAINTED 590
Case Study 8.1: Constructing and Printing Employee Records 591
8.2 IN RETROSPECT 597
Simple Records 597
Arrays of Records 598
Implementing Records Without the Record Data Type 598
Correctness of Programs Using Records 601
Efficiency of Programs Using Records 601
8.3 WARMUP EXERCISES 601
For Review 601
A Deeper Look 602
To Program 602
8.4 THE CHALLENGE 603
Case Study 8.2: Sorting Records 603
8.5 WORKING OUT 621
8.6 GETTING ACQUAINTED WITH FORTRAN 621
Case Study 8.1 in Fortran 621
8.7 FORTRAN IN RETROSPECT 625
Declaring Simple Records in Fortran 625
Arrays of Records in Fortran 625
8.8 WARMING UP TO FORTRAN 626
For Review 626
A Deeper Look 626
To Program 627
8.9 THE CHALLENGE IN FORTRAN 627
Case Study 8.2 in Fortran 627
8.10 WORKING OUT IN FORTRAN 631

Xi

Xii

CONTENTS

9.1

9.2

9.3

9.4

9.5
9.6

9.7

9.8

9.9

Constructing Arbitrary Data Structures—
Linked Lists

GETTING ACQUAINTED 634
Case Study 9.1: Input and Print a Linked List of Integers
Case Study 9.2: Maintaining Several Order Lists 654
Case Study 9.3: A Dynamic Waiting Queue 662
Case Study 9.4: A Dynamic Priority Stack 673
IN RETROSPECT 679
Constructing a Linked List ~ 680
Implementing Linked Lists with Arrays 681
Passing Linked Lists Between Routines 681
Queues, Stacks, and General Lists 682
Correctness of Programs with Linked Lists 682
Efficiency of Programs with Linked Lists 683
WARMUP EXERCISES 683
For Review 683
A Deeper Look 685
To Program 685
THE CHALLENGE 685
Case Study 9.5: A General Dynamic Order List 686
Case Study 9.6: Nonrecursive Quicksort 698
WORKING OUT 709
GETTING ACQUAINTED WITH FORTRAN 710
Case Study 9.1 in Fortran 711
Case Study 9.2 in Fortran 721
Case Study 9.3 in Fortran 725
Case Study 9.4 in Fortran 733
FORTRAN IN RETROSPECT 738
Linked Lists in Fortran 738
The comMmoN Statement 739
The Fortran ENTRY Statement 744
WARMING UP TO FORTRAN 746
For Review 746
A Deeper Look 747
To Program 747
THE CHALLENGE IN FORTRAN 748
Case Study 9.5 in Fortran 748
Case Study 9.6 in Fortran 756

9.10 WORKING OUT IN FORTRAN 762

10 External Files

10.1 GETTING ACQUAINTED 767

Case Study 10.1: Construct an External File 767
Case Study 10.2: Print an External File 772

CONTENTS Xiii
Case Study 10.3: Searching an External File 775
Case Study 10.4: Deleting Records from an External File 783
10.2 IN RETROSPECT 788
Operations on External Files 788
Header Records, Trailer Records, and Checking for End-of-File 789
External Files as Parameters 790
Correctness of Programs with External Files 790
Efficiency of Programs with External Files 791
10.3 WARMUP EXERCISES 791
For Review 791
A Deeper Look 792
To Program 793
10.4 THE CHALLENGE 793
Case Study 10.5: Merging Two External Files 793
10.5 WORKING OUT 799
10.6 GETTING ACQUAINTED WITH FORTRAN 800
Case Study 10.1 in Fortran 801
Case Study 10.2 in Fortran 806
Case Study 10.3 in Fortran 809
Case Study 10.4 in Fortran 812
10.7 FORTRAN IN RETROSPECT 817
External Files on Real Computers 817
The Fortran opPEN Statement 819
Writing Sequential Files in Fortran 819
The Fortran ENDFILE Statement 822
Reading a Fortran Sequential File 822
The Fortran REWIND Statement 823
The Fortran cLOSE Statement 823
The Fortran BACKSPACE Statement 825
The Fortran INQUIRE Statement 825
Formatted Input in Fortran 826
Fortran pirect Files 828
A Reminder 829
10.8 WARMING UP TO FORTRAN 830
For Review 830
A Deeper Look 830
To Program 831
10.9 THE CHALLENGE IN FORTRAN 831
Case Study 10.5 in Fortran 831
10.10 WORKING OUT IN FORTRAN 835

Appendix A: Other Fortran Features 836
Appendix B: Answers to Selected Exercises 849
Appendix C: Fortran Intrinsic Functions 869

