SOCIETA ITALIANA DI FISICA

RENDICONTI DELLA SCUOLA INTERNAZIONALE DI FISICA « ENRICO FERMI »

XXXIX Corso

Astrofisica del plasma

SOCIETA' ITALIANA DI FISICA

RENDICONTI

DELLA

SCUOLA INTERNAZIONALE DI FISICA «ENRICO FERMI»

XXXIX Corso

a cura di P. A. STURROCK
Direttore del Corso

VARENNA SUL LAGO DI COMO
VILLA MONASTERO
11-30 LUGLIO 1966

Astrofisica del plasma

1967

ACADEMIC PRESS INC. 111 FIFTH AVENUE NEW YORK 3, N. Y.

United Kingdom Edition
Published by
ACADEMIC PRESS INC. (LONDON) LTD.
BERKELEY SQUARE HOUSE, LONDON W. 1

COPYRIGHT © 1967, BY SOCIETÀ ITALIANA DI FISICA

ALL RIGHTS RESERVED

NO PART OF THIS BOOK MAY BE REPRODUCED IN ANY FORM, BY PHOTOSTAT, MICROFILM, OR ANY OTHER MEANS, WITHOUT WRITTEN PERMISSION FROM THE PUBLISHERS.

Library of Congress Catalog Card Number: 67-17120

PRINTED IN ITALY

Introduction.

P. A. STURROCK

Institute for Plasma Research, Stanford University - Stanford, Cal.

In sitting down to write this introduction to the course on « Plasma Astrophysics » in the Enrico Fermi series, my first recollection is of the beautiful setting in which these courses take place. One's first inclination may be to dismiss this as an irrelevancy. Yet, as a scientist, one must admit that there are reasons that the Enrico Fermi series is so successful, and that the environment of the Villa Monastero is one factor which all the courses have in common. At Varenna the pace of life is sufficiently slow that the lecturer faces a class of colleagues and students who are alert, appreciative and critical. Discussions which begin in the lecture room will continue over lunch, on the path to the castle, or beside the lake. Here is an opportunity for a thorough and leisurely exchange of ideas, a place where problems are solved, where friendships are made and renewed.

Such an environment is favorable for any scientific meeting, but it is particularly valuable when the time comes to review—and hopefully advance—one of those areas of science which is something of a «no man's land », either because it overlaps two or more rather well established disciplines, or because it is in a very early stage of development. For both reasons, plasma astrophysics qualifies as a subject appropriate for a course in the Enrico Fermi series, and it was with pleasure that I accepted the invitation of the Italian Physical Society to organize and direct the course given in July of 1966. Nevertheless, such an assignment poses a number of problems.

The first was to decide how the material appropriate to such a course could possibly be fitted into three weeks. Reluctantly I had to decide that it would be necessary to eliminate the extensive and fascinating body of material concerned with solar-terrestrial relations. With the advent of space vehicles to permit the direct observations of conditions in the environment of the earth and in interplanetary space, the observational and also the theoretical material in this branch of science has grown very rapidly in the last few years. This material is reviewed regularly in a series of international

conferences on «space science» which—rightly or wrongly—is coming to be regarded as an autonomous scientific discipline.

The relevance of plasma physics (variations of which are described as « magnetohydrodynamics », « hydromagnetics », « cosmical electrodynamics », etc.) to astrophysics has been clearly recognized for many years. Some of the most important early developments in plasma physics were due to Alfvén, Cowling, Ferraro and others, who were concerned with astronomical problems. During the last decade or so, there has been a tremendous development in our knowledge of the plasma state, due primarily to the great effort which has gone into the controlled thermonuclear reactor program. At the same time, astronomers have produced much more detailed information on phenomena such as solar flares, solar radio bursts, supernova remnants and radio galaxies. Moreover, new phenomena have been discovered, the most exciting of which is the mysterious quasar.

In view of these developments, both in plasma physics and in the range of phenomena which involve plasma mechanisms, it is not surprising that the application of plasma physics to astrophysics has fallen into arrears. Complex problems are posed, and much detailed knowledge of plasmas is available, but application of the latter to the former will be a slow and difficult process. It is indeed quite likely that, despite the extensive body of literature on plasma physics which now exists, some quite different developments may be necessary to answer some of the problems posed by astrophysics. As an example one may note that the structure of collision-free shock waves is one of the most intriguing problems of present-day plasma physics, and that interest in this problem is due principally to the role of shock waves in astrophysical situations: the bow shock of the earth, the shock waves produced by a solar flare, and the shock wave outside an expanding supernova shell.

The development of plasma astrophysics is therefore likely to be a three-part dialogue, involving observers, plasma physicists, and those who try to interpret one to the other. The lectures given at Varenna were divided into three such categories, but there was a lively interplay between them, and this is reflected in the ordering of lectures. In so far as lectures can be grouped, the groups correspond to different phenomena.

Professor Reimar Lust sketched, in a few lectures, the most important concepts and theoretical results of plasma physics, giving us a feeling for the orders of magnitude of the various effects by citing a number of examples from astrophysics. I presented a short account of the theory of electromagnetic waves in plasmas, to supplement the treatment of magnetohydrodynamic waves in Lüst's lectures. Professor Russel Kulsrud then spent several lectures in reviewing and classifying the bewildering number of instabilities which have been discovered by plasma physicists. He achieved the almost miraculous feat of bringing his listeners to believe that the subject

is really not so very difficult, and that most instabilities can be understood by fairly simple physical considerations.

Dr. Vaclav Bumba and Professor Harold Zirin together gave a comprehensive account of the wide range of optical observations on which is based our understanding of the structure and motion of the sun's atmosphere and the sun's magnetic field. Although these lecturers never allowed us to lose sight of the difficulties of making these observations, and of the precautions necessary in interpreting the photographs and spectra, we received a lucid introduction to the many fascinating phenomena which occur in the sun. The sun's atmosphere is full of surprises and subtleties and, either directly or indirectly, magnetic field seems to be involved in most of them.

We had hoped that it would be possible for Professor V. L. GINZBURG to participate in the course, but this unfortunately proved not to be possible. We were however fortunate to be able to persuade Dr. André Boischot to join the school at short notice. Furthermore, Boischot kindly agreed to lecture in English, on the understanding that, at the next course on plasma astrophysics, all British and American lecturers would speak in French. Boischot gave a clear account of the many types of radio emission which originate on the sun, and reviewed the current theoretical interpretation of these various types.

In one pair of lectures, I discussed the significance of force-free magnetic field patterns in astrophysics, and the possibility of interpreting quiescent solar prominences in terms of a particular force-free field structure. In another pair of lectures I discussed the requirements of a model of solar flares and proposed a particular model. A substantial fraction of the course was therefore devoted to the sun. However, this seems most appropriate since we have far more detailed observational material about the sun than about any other astronomical body. As each succeeding lecturer enlarged on the many effects of the sun's magnetic field, I was reminded of the remark of Professor Robert Leighton, «If it were not for its magnetic field, the sun would be as dull a star as most astronomers think it is ».

A number of interesting problems involving magnetohydrodynamic concepts, some occurring in the sun and some in other objects, were considered by Professor Leon Mestel and Professor Eugene Parker. Mestel considered the important problem of the possible origin of the magnetic field of stars—the fossil, dynamo and battery theories—and the influence of this field on the early evolution of the protostar and on the possible convection patterns of a developed star. A great deal of interesting work has been done on these problems in recent years, but the problems are formidable and, as Mestel clearly indicates, much work remains to be done.

PARKER considered the role played by magnetic field in three important areas: the heating of the sun's atmosphere, the solar wind, and the Galaxy.

INTRODUCTION XV

Although evidence has been available for many years that the Galaxy has a general magnetic field, most of the questions concerning this magnetic field—such as its origin, structure, and dynamical consequences—remain unanswered. Parker addressed himself to the interesting questions of the influence of magnetic field on gravitational processes and the role of the magnetic field in coupling the pressure of the cosmic ray gas to the Galaxy.

The remainder of the lectures were concerned with the fascinating electromagnetic phenomena which occur in radio galaxies and quasi-stellar radio sources, or « quasars » for short. Lucid and up-to-date reviews of the optical observations and of radio observations were presented by Professor Margaret Burbidge and Dr. Peter Scheuer, respectively. A theoretical discussion of many of the questions raised by these observations was given by Professor Geoffrey Burbidge. The problems posed by quasars and radio galaxies have led to theoretical investigations in many branches of physics: for instance, the explosion mechanism has been discussed as a nuclear-physics process, as a relativistic process, as the annihilation of matter and antimatter, and as the result of simultaneous supernova explosions. It seemed appropriate, at this summer school, to discuss these phenomena from a plasma-physics point of view.

Since the bulk of our information about the explosions is derived from radio observations, the radiation process was discussed in detail by Scheuer. It seems clear that the most significant radiation process is that of synchrotron radiation, but, as Scheuer pointed out, there are other possibilities, and details of the synchrotron process and of the structure of radio clouds remain in doubt. In the final lectures, I briefly presented a possible model for the structure of quasars and radio galaxies. If these objects form from intergalactic gas containing a primeval weak magnetic field, some of the gravitational energy released during condensation will be transformed into magnetic energy. It appears that this magnetic energy could be released by the flare mechanism so that the explosions of quasars and radio galaxies may indeed be « galactic flares ».

The Summer School at Varenna was clearly successful in delineating many of the significant plasma phenomena of astrophysics, in presenting the basic plasma physics to which we must turn in attempting to understand these phenomena, and in presenting some of the theories which are currently being developed. It is clear that plasma physics plays an essential role in many important astrophysical phenomena. It is also clear that our understanding of plasma astrophysics is at a very early stage of development. It is likely to be many years still before there is general agreement even on the plasma mechanisms which occur in the atmosphere of the sun, and longer still before all the questions raised in the pages of these proceedings can be considered to be answered. It is most fortunate that these questions, and possible answers, could be raised and discussed at the Villa Monastero in 1966.

It is my pleasure to take this opportunity to thank those who helped to make the Summer School a success. Thanks are due to my fellow lecturers for the excellence of their lectures, for the enthusiasms with which they were presented, and for the additional effort of preparing these lectures for publication. Special thanks are due to Peter Scheuer who, in addition to those of lecturer, assumed the burdens and tasks of Secretary. As one of the lecturers, I may say that we in turn are indebted to the students for their perceptively critical but appreciative response to our lectures. Many of the students as well as some of the observers helped in preparing typescripts of the lectures. Detailed acknowledgment is made on the title page of each chapter. In editing these proceedings, I have had the benefit of assistance from Peter Scheuer and from Mr. Paul Feldman, Mr. Donald Hall, Dr. Hugh Johnson, Mr. Ronald Moore and Dr. Sidney Self.

* * *

I wish to thank Professor Germana for his continual support and the secretaries, Signorine M. Astorri, N. Foladelli and M. Mella, who somehow produced comprehensible typescripts from illegible handwriting. In preparing for the Summer School and subsequently in trying to extract typescripts from busy scientists, I have been most ably assisted by Miss Linda Marks.

Finally, on behalf of all the participants at the Summer School, I wish to thank the Italian Physical Society for providing us with such a memorable environment for our scientific and extra-scientific activities.

SCUOLA INTERNAZIONALE DI FISICA «E. FERMI» SOCIETÀ ITALIANA DI FISICA

INDICE

Ρ.	A. Sturrock - Introduction		pag. XII
Gr	uppo fotografico dei partecipanti al Corso	fu	ori testo
R.	LUST - Introduction to plasma physics		
	1. Introduction		pag. 1
	2. Single-particle theory		» 2
	2'1. The Maxwell equations and the equation of motion		» 2
	2. Drift velocity		» 3
	2.3. Motion in axisymmetric fields		» 5
	2'4. Adiabatic invariants		» 7
	3. The macroscopic description		» 11
	31. Magnetohydrodynamic approximation		» 11 » 15
	3'2. Two-fluid model		» 15 » 20
	APPENDIX		» 22
	APPENDIX	• •	" 22
Ρ.	A. STURROCK - Waves in plasmas		
	1. Introduction		» 24
	2. Classification of waves		» 25
	3. Wave equation		» 26
	4. Waves in a cold collision-free plasma with no magnetic f	ield	» 28
	5. Effect of collisions		» 33
	6. Effect of magnetic field		» 34
	61. Propagation transverse to the magnetic field ($m{k}\cdotm{B}_0$		» 36
	6.2. Propagation parallel to the magnetic field $(\boldsymbol{k} \ \boldsymbol{B_0})$.		» 41
	7. Faraday rotation		» 43
	8. Whistler waves		» 44

R.	M.	. Kulsrud – Plasma instabilities	
	1.	Instabilities in astrophysics pa	g. 46
	2.	General remarks on instabilities	46
		2'1. Definition	46
		2'2. Normal-mode analysis »	47
		2'3. Example of a quasi-mode	
		2'4. Nonlinear limit	49
	3.	Low frequency M.H.D. instabilities without resistivity; Ray-	40
		leigh-Taylor instability	
		31. General remarks	
		3'2. Incompressible case with zero magnetic field » 3'3. Compressibility	
		3'3. Compressibility	
		3.5. Interchange instability	
		3.6. Example of the interchange instability	
		3.7. Comparison of Rayleigh-Taylor and interchange insta-	
		bilities	54
			~ 1
		eriteria	54
	4.	Effect of line-tying and resistivity on the Rayleigh-Taylor	
		instability	
		4.1. Zero resistivity	
		4.2. $\eta \neq 0$	
	5.	Tearing instability	
		51. General remarks	
		5.2. Tearing mode theory	
		5'3. Linear theory	0.4
			» 62
	o	Anisotropic instabilities. Low-frequency M.H.D	
	0.		64
		6'2. Fire hose instability	
			» 65
	7		» 67
	٠.		» 67
			» 68
		The second secon	» 70
	8		» 71
		-	» 72
			» 73
	А	PPENDIX: Derivation of eq. (5.17)	<i>"</i> 10
\mathbf{v}	. в	BUMBA - Observations of solar magnetic and velocity fields	
			» 77
			» 77

INDICE

		21. Innuence of observational conditions and resolution on		
		the results obtained	pag.	77
		2'2. Present situation in observations))	80
	3,	Magnetic and velocity fields in the solar atmosphere	>>	82
		3'1. Large-scale distribution of solar magnetic fields))	82
		3.2. A note on the rotation of solar photospheric layers))	83
		3.3. The close relationship of the distribution of solar magnetic		
		and velocity fields))	85
		3.4. On solar granulation	>>	87
		3.5. Hierarchy of solar magnetic-and velocity field-distributions))	88
		3'6. Comparison of photospheric and chromospheric dynamical reads in a region of weak healthway folds.		89
		ical models in a region of weak background fields))	
	4.	Magnetic and velocity fields in active regions	>>	90
		41. Development of a single active region within the super-		0.0
		granular network	"	$\frac{90}{97}$
		4'3. Some notes on ephemeral processes and their relation to	>>	91
		magnetic- and velocity-field distributions))	109
		4'4. Quiescent filaments))	114
		4'5. Development of coronal condensations))	115
	5.	Changes of solar activity))	116
	•	51. Main characteristics of the cycle))	117
		5'2. Basic processes of solar activity	»	118
		5'3. Hierarchy of velocity- and magnetic-field distribution and		
		solar activity	>>>	118
		solar activity		
		in time))	120
	6.	Conclusion))	120
H.	$\mathbf{Z}_{\mathbf{I}}$	RIN – The solar atmosphere.		
	1	Introduction	'n	124
		The chromosphere	»	124
	3.		"	$\frac{127}{127}$
				$\frac{121}{132}$
		Chromosphere oscillations))	
		Chromospheric temperatures))	133
	6.	General chromospheric model))	134
	7.	The solar corona))	135
	8.	Coronal condensation over an active region))	136
	9.	Atomic processes))	13ℓ
	10.	Flares))	138
		Great flare))	139
	•			_
A.	В	оїsснот – Solar radio bursts		
		Introduction		142
	4	Introduction))	
	1.	Refraction of the rays))	146

VIII INDICE

	2. Observation of radio bursts	pag.	147
	2'1. Type III	»	147
	2'2. Type II))	150
	2'3. Continuum bursts))	152
	3. Presumed origins of these different bursts))	153
	4. Type IV B and noise storms		153
	4. Type IV D and hoise storms	,,	100
Р.	A. STURROCK and E. T. WOODBURY - Force-free magnetic fields and solar filaments	»	155
Р.	A. STURROCK - Solar flares		
	1. Prologue	»	168
	2. Introduction	>>	168
	3. Requirements of a flare model		171
	4. Model of the pre-flare state	»	172
			178
	5. The high-energy phase of solar flares	"	710
${f L}.$	Mestel - Stellar magnetism		
	Introduction))	185
	1. The fossil theory))	186
	1'1. Star formation in magnetic clouds		186
	1'2. The approach to the main sequence. Hayashi convection	"	100
	and a primeval field))	191
	1'3. Magnetic braking in the Hayashi phase))	193
	1'4. The time for the decay of a strong primeval field	»	201
	1.5. Internal and external fields	»	202
	1.6. Application to the observed magnetic stars	»	206
	2. Dynamo theories))	211
			213
	2.1. Conditions for dynamo action	»	$\frac{213}{216}$
	2.2. The solar cycle as a nonsteady dynamo))	$\frac{210}{217}$
	2'3. Application to magnetic variable stars))	
	3. The «battery » mechanism	»	219
	31. The battery process in rotating stars))	220
	3'2. The effect of a primeval poloidal field))	223
	3'3. Observable consequences	»	225
Ε.	N. PARKER - Cosmic magnetohydrodynamics		
	1. Wave generation in the photosphere))	229
	_		$\frac{220}{230}$
	1'1. Energy trasmission	» »	$\frac{230}{230}$
	1'2. The generation of sound in a turbulent medium		$\frac{230}{232}$
	1'3. The effect of a magnetic field on acoustic waves))	402

INDICE

	2. Coronal expansion; mom	entum equa	tion						pag.	234
	3. Coronal expansion; energ))	238
	31. Magnetic fields))	241
	3.2. Effect of interstellar	r pressure) >	242
	3'3. Existence of stellar	winds))	243
	4. The cosmic-ray gas and	the galactic	magn	etic	field	1.			»	243
E.	. M. Burbidge – Optical of quasi-stellar objects	bservation	on ra	ıdio	gala	axie	s a	\mathbf{nd}		
	- •									250
	Part I: Radio galaxies .))	250
	1. Plasma in galaxies))	250
	2. Spiral structure))	251
	3. Radio galaxies and relat	ed objects))	252
	4. Discussion of individual	radio galax	ies .						>>	253
	4 ¹ 1. M 87								»	253
	4'2. NGC 1275))	254
	4'3. M 82))	254
	4'4. NGC 4038-9							٠.٠))	255
	4.5. Relation between ra									255
))	200
	5. Relationship between phe galaxies))	256
	PART II: Quasi-stellar object))	256
	6. Line spectra))	257
	7. Continuum spectra))	259
	8. Radio quiet objects						•))	260
ъ.	A C C		,		. 11					
Ρ.	. A. G. Scheuer – Radio	gaiaxies ai	ia qua	ası-s	теша	r se	our	ces		
	1. The sky at radio freque))	262
	2. Galactic sources))	262
	3. Extragalactic sources .))	263
	4. Radio structure of source	es))	264
	4'1. Pencil beams))	265
	4.2. Interferometry))	265
	4.3. Aperture synthesis))	265
		• • • • • •))	268
	4.5. Interplanetary scint))	$\frac{268}{268}$
	4.6. The structure of rac 4.7. The structure of qu))	$\begin{array}{c} 268 \\ 269 \end{array}$
	4'8. Radio sources as ga))))	$\frac{209}{270}$
		_								$\frac{270}{273}$
))	
	6. Variation of radio source	es with time	е				•))	274

X INDICE

	7.	Radio spectra pag. 27	5
		71. Summary of observations and introduction » 27	5
		7'2. Absorption processes in radio sources » 27	
		73. The low-frequency source in the Crab Nebula » 27	
		74. The variable radio source 3C 273 B	30
		7.5. Radiation processes other than electron synchrotron radiation.	₹1
	8.	Physical conditions in radio galaxies	52
Ρ.	Α.	G. Scheuer - Radiation	
	1.	Introduction	39
	2.	The power radiated by an electron » 28	39
	3.	Spectral distribution of the radiation	92
		3.1. Inverse Compton scattering	93
		0 1. 111, 0100 0 omp	93
	4.		97
			99
	6.	Relation between the electron energy distribution and the	
	٠.		00
	7.	The minimum energy in a radio source » 30	05
	8.	Arguments that depend on source geometry are weak arguments. Arguments independent of source geometry are strong arguments	05
G.	\mathbf{R}	. Burbidge - High-energy astrophysics	
	1.	X-ray and γ-ray astronomy	07
		1.1. The background radiation	08
			09
	2.	•	11
		- · · · · · · · · · · · · · · · · · · ·	11
		2. Luminosities and radio fluxes	$\frac{1}{13}$
		<u> </u>	13
			15
			16
		2.6. The $\log N$ - $\log S$ curve	17
		2'7. The composition of the quasi-stellar objects » 3	18
	3.	Theories which attempt to account for the energy require-	10
		, and the same of	18
		31. Supernova theories	20

INDICE	X
--------	---

32.	Stellar collisions			pag.	322
3'3.	Massive super-stars))	323
3.4.	The role of magnetic fields in massive objects.))	325
	Theories using the concept that massive objects				
	cosmological origin			>>	329
3.6.	Quarks as energy sources in massive objects				
	cosmological origin))	330
3.7.	Matter-antimatter annihilation))	333
3.8.	Gravitational focussing))	335

Introduction to Plasma Physics (*).

R. Lüst

Max-Planck-Institut für Physik und Astrophysik Institut für extraterrestrische Physik - Garching bei München

1. - Introduction.

A ionized gas is called a plasma if it contains charged particles in such a large number that its properties are essentially influenced and determined by their presence.

In most cases we can regard the plasma as quasi neutral, which means that the number of positive and negative charges are equal. The special properties of a plasma depend on the electrodynamic interaction of the particles with each other and with external fields. Furthermore the hydrodynamical properties are important; hence we have a coupling between hydrodynamical and electrodynamical phenomena.

Plasmas play a very important role in the universe, since the major part of it is in the plasma state except for some planets and their atmospheres. Also magnetic fields are usually present, and often the field strength is high enough for the interaction between the magnetic fields and the plasma to be important.

There are three main reasons for the occurrence of plasma in the universe. First, the atoms are ionized under suitable conditions of temperature and pressure; this is mainly the case in stellar atmospheres and interiors. Furthermore, extensive sources of electromagnetic radiation exist in the universe which can maintain ionization in gases of smaller density. This is important for the ionization in the interstellar regions: In the H I-regions only the metal atoms are ionized while in the outer regions, the H II-regions, hydrogen also is fully ionized. Finally, ionized particles are continually ejected from the stars into interstellar space.

^(*) Prepared with the assistance of M. Scholer, Max-Planck-Institut für Physik und Astrophysik - Institut für extraterrestrische Physik, and R. Peckover, Department of Applied Mathematics and Theoretical Physics, Cambridge.

^{1 -} Rendiconti S.I.F. · XXXIX.