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Preface

This conference is now the sixth of the Optical Fiber Sensors (OFS) series,
the first having been launched in London in 1983. Progress over the last six
years has been rapid and the number of laboratories working in the field has
grown significantly. In addition, the number of commercially available sensors
is growing, although, as usual, not as rapidly as the wilder optimists originally
predicted. The subject is now maturing significantly, yet this volume shows
that there is still no shortage of bright, new ideas.

The OFS series is devoted to the most recent research developments in
the field and, in most respects, leaves commercially oriented conferences to
cover items closest to production. However, as the technology progresses, it
is appropriate to provide some coverage of applications-oriented research and
development, and more applied sessions of this nature have been included.

The standard of papers contributed to the conference has been very high this
year, and it has unfortunately been necessary to reject a number of interesting
papers. Those that remain, invited, contributed and poster papers, are included
in this volume. The poster papers were chosen for their greater suitability
for presentation to smaller groups of people, giving more scope for detailed
discussion around the poster display.

The conference this year has been somewhat unusual in having allowed a
much shorter time between the initial announcement and call for papers, and
the subsequent deadline, and the conference itself. This has, I believe, led to a
much improved topicality of papers, most of those submitted being of a very
up-to-date nature. Also I would care to speculate that laboratories with a large
number of potential papers to submit have probably only had time to prepare
papers covering their best results. It is becoming too common an experience
nowadays to attend a conference having already seen a large number of the
papers in the rapid-publication monthly journals. We all hope that this will be
less likely for this conference.

Whatever the outcome, I am sure you will appreciate the quality of the
papers contained in this volume, and will join me in thanking heartily all the
authors and members of the organising and technical committees who have
contributed to the success of the conference. I owe a particular debt to Pro-
fessor Ralf Kersten, who, as the European co-chairman, has relieved me, by
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voluntarily taking on far more than his normal share of a considerable work-
load, during a period when I changed my post to join a new company. This
would normally be a major activity in its own right, without the additional
effort of organising the technical program of an international conference at the
same time!

Of course, I must not forget the tremendous efforts of Dr. Hervé Arditty,
chairman of the International Steering Committee, who has dealt with the enor-
mous administrative load of running the conference, whilst, at the same time,
directing his company. Special credit is also due to the other continental chair-
men, Professor Ohtsuka and Dr. Kim, who have, in a smooth and efficient
way, dealt with all the duties asked of them.

With the greatest thanks to all concerned, I hope that you enjoy the confer-
ence and find these proceedings valuable as a reference book for many years
to come.

Chandler’s Ford, England J.P. Dakin,
July 1989 Chairman of the
Technical Program Committee
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101 Uses for Single Mode Fiber Directional Couplers

H.J. Shaw
Edward L. Ginzton Laboratory, Stanford University, Stanford, CA 94305, USA

We will review the saga of the humble but ubiquitous single mode fiber directional
coupler which is the principal means of fiber interconnection in single mode fiber circuits.
Its use in interferometric sensors and sensor networks will be described. Its use in other
applications areas and the interplay between these and sensor applications will also be
considered. The types of single mode fiber couplers now available and their prospects for
the future will be discussed. Speculations will be made on evolving or possible new
forms of couplers to circumvent limitations of present types and to open new applications.

Summary

Single mode fiber directional couplers are used to couple a propagating mode in one
fiber to a propagating mode in another fiber. They are more important to the field of single
mode fiber optics than the ancestors from which they derived, namely microwave long slot
directional couplers, are to the field of microwaves. This is partly because in microwaves
there are several types of couplers and junctions, while in single mode fiber optics the
directional coupler is the only available all-fiber choice at this time.

In the beginning, about a decade ago, there were in some quarters strong concerns
about the prospects for making very good single mode fiber directional couplers, even
though integrated optic couplers and multimode fiber couplers had been successfully made
during the preceding decade. Multimode couplers were made by mechanical lapping
which, applied to the single mode case, would require working to submicron tolerances in
spacings measured from the nearly invisible surface of the very small fiber core. Some
ingenious methods were devised in an attempt to avoid this. However, by carefully
establishing precise reference surfaces from which to measure, very high performance
units were demonstrated using a lapping approach.

Today, single mode fiber directional couplers can be made routinely, although
making state of the art units requires considerable skill. Of the various possible formats for
single mode couplers, such as (1) etched types for simplicity of fabrication, (2) polished
types for precise variable tuning and minimum power loss, (3) clamped, bonded or fused
polished types for precise fixed coupling ratios and low loss, and (4) biconical fused types
for high performance with minimum size in both fixed and tunable formats, the second and
fourth types have found the widest use to date, with the latter predominating. Following
the lead of the microwave directional coupler art, all of these couplers can be analyzed in
terms of even and odd normal modes, leading to an understanding of the mechanisms of
directivity, dispersion, polarization behavior and power loss.

Single mode fiber optic directional couplers were first developed to satisfy the needs
of fiber interferometers and resonators for sensors, an application to which they are ideally
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suited. Sensors of this type were the first devices to employ single mode fibers because of
the need for spacial coherence for interferometry, and single mode fiber components were
developed for this field before a real need for them arose in the communication field. Here
single mode directional couplers are used to couple waves coherently to produce
interference fringes having high sensitivity to environmental measurands. The fit of single
mode directional couplers to the needs of these devices was profound, allowing the
construction of all fiber circuits in which the light never left the fiber, giving high stability
as well as sensitivity. Here the directional coupler was a replacement for the familiar bulk
optic beam splitter, which preceded microwaves, and which is also a directional coupler
but not a single mode device.

With high quality directional couplers on hand, it became possible to also construct
complex fiber optic networks for the interconnection of multiple arrays of sensors. A
variety of ladder and lattice topologies have been employed, allowing one to make design
tradeoffs between power efficiency and cross talk. Single mode fiber components and
techniques for sensor networks have some features in common with fiber circuits and
networks in other applications areas. These include fiber optic systems for microwave
signal processing and fiber optic communication systems. As these areas develop there is
cross fertilization between them and the sensor area.

The marriage of microwaves and fiber optics was pleasing in view of the historic
microwave background for the directional coupler itself. One purpose was to transform
and process the microwave signal, in either time or frequency domains, at higher speeds
than could be done electronically. This was done by modulating the microwave signal
onto an optical carrier and injecting this composite signal into a complex single mode fiber
processing network. The same basic network topologies as used for sensor networks can
also be employed as multi-element transversal filters for this purpose. These systems can
involve cascaded arrays of large numbers of directional couplers. Information bandwidth
which is difficult or impossible to handle in rf circuits becomes narrowband information
and easily processed in these optical circuits, leading to enhanced levels of computations
per unit time proportional to the square of the optical bandwidth. This, together with the
ability to form large numbers of parallel fiber paths and join them all together with
directional couplers leads to new possibilities for high data throughput rates. Filter
characteristics can be synthesized using the classical general methods of electronic
filtering. Fiber optic recirculating memories, another group of devices based on directional
couplers, are complementary to the above ladder and lattice systems. They are transient
memories with storage times from microseconds to milliseconds and beyond, which can
function as buffer memories for the former devices.

Directional couplers find their way into the fiber optic communication area in several
ways. They are applicable as taps and power splitters for the interconnection of multiple
users in fiber optic local area networks. For serial distribution systems multiple users can
be distributed along the length of a fiber bus using one or more directional couplers per
user which act as taps onto the bus. For parallel distribution systems single mode tree
couplers and star couplers can be constructed as cascades of individual directional couplers.
The wavelength dependence of the beat length in directional couplers provides a basis for
design of wavelength division multiplexers, where long interaction lengths are used in the
couplers to provide wavelength resolution. Directional couplers can also be employed as
multiport hybrid junctions for combining signals in diversity receivers and for coupling
local oscillators to signal channels in coherent communication receivers. In all of these
applications fiber couplers offer benefits of compatibility with the system fibers and very
low internal dissipative signal loss. Prospects for directional couplers in communications
should grow with the emergence of fiber networks for broadband services to homes and
businesses, handling data or information modulated either directly on the optical carriers
or on microwave sub-carriers.



