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preface

In developing this revised version of the Berkeley Physics Laboratory, we
have tried to make the original material more useful for beginning students,
many of whom will be taking their first college-level physics course con-
currently with the use of this laboratory course. At the same time, we have
tried very hard to preserve the essential characteristics and flavor of the
original version, particularly with respect to its use of contemporary instru-
mentation and its frequent contact with current or recent research in physics.
These qualities, we feel, were largely responsible for the fairly wide acceptance
of the first edition, and we have tried to preserve them in this revision.

Most of the original experiments have been retained; the order and
organization have been changed, and the discussions have all been eom-
pletely rewritten with the aim.of making them more readable and self-
contained. In addition, a large number of completely new experiments have
been developed, so that the total number of experiments is nearly double
that of the original version.

Specifically, the experiments are organized into twelve units, with four to
six experiments in each unit. Most units begin with rather elementary experi-
ments and conclude with more challenging ones. Usually the same basic
equipment is used for all experiments within a unit, with minor changes in
accessories for the individual experiments. This scheme has the considerable
pedagogical advantage that a student does not have to familiarize himself
with a completely new setup for every experiment. Each experiment is sub-
divided into sections, each with a numbered paragraph of discussion. Thus,
an instructor who wishes to assign only part of an experiment can refer to
the sections by number.

Our hope is that this scheme will make a sufficiently fiexible system so that
instructors with various objectives can use this material as a basic resource
to construct their own individualized courses, selecting those units, and those
experiments or parts of experiments within units, which meet their needs. It
is not essential to go straight through this course from beginning to end.
Some experiments, however, do have desirable prerequisites. For example,
a student should be familiar with the experiments on Electronic Instru-
mentation before continuing with Electric Circuits or Electrons and Fields.

In most cases the experiments have been designed so that they can be
carried out reasonably thoroughly by an average student in one 3-hour
laboratory period. In some cases it will be desirable to omit some sections of
certain experiments or to allow more than one laboratory period. The
organization of the material is, we feel, very suitable for an “open-ended”
laboratory in which students work at their own pace, each according to his
ability and motivation.

In the revised edition we have used the MKS system of units throughout,
with occasional references to CGS or British units. Although the esthetic
qualities of the MKS system can be debated, one overwhelming advantage
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of the MKS system is the universal use of this system in practical electrical
measurements. In addition, most new elementary texts now use this system.
A table of conversion factors is included for the benefit of those readers who
were brought up on CGS units.

Finally, we wish to repeat the statement from the Preface to the first
edition that this laboratory course may make greater demands on the
average student than more conventional laboratory activities. We have tried
very hard to avoid making the new material a “‘cookbook,” and we are aware
that as a result some students will have to struggle. This struggle is an essential
part of the learning process, and from it will come greater strength.

Alan M. Portis
Hugh D. Young
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units

In these discussions and laboratory activities,-the MKSA system of units is
used throughout, both for theoretical discussions and for actual measure-
ments. In this system there are four basic units: the meter for length, the
kilogram for mass, the second for time, and the ampere for electric current.
All other mechanical and electrical quantities expressed in terms of these
four units are given in the table of Units. We also list the corresponding
CGS (Gaussian) units, where they have special names and conversion factors.
In the CGS system there are only three fundamental units: the centimeter,
the gram, and the second; the unit of electric charge, the statcoulomb, is
expressible in terms of these.

Often it is convenient to use units related to these basic units by some power
of 10. For example, we may measure length in meters, kilometers (10°
meters), centimeters (10~ 2 meters), millimeters (10 ~* meters), microns (10~¢
meters), or angstroms (10~ '° meters), depending on the scale of the corre-
sponding physical situation. Ordinarily, with a few exceptions, related units
are indicated by attaching a prefix to the basic unit. For example, kilo always
means 10, and 1 kilometer = 10? meters. The prefixes in-common use, with
some examples of each are given in the table of Unit Prefixes.

UNIT PREFIXES

Power of ten Prefix Abbreviation Examples
10'2 tera- T
10° giga- G gigahertz (GHz)
108 mega- M megahertz (MHz)

megohm (MQ), megawatt (MW)

10° kilo- k kilovolt (kV), kilowatt (kW)
1072 centi- c centimeter (cm)
1073 milli- m milliampere (mA), millihenry (mH)
10-¢ micro- U microvolt (uV), microfarad (uF)
10°° nano- n nanosecond (nsec) ;
10722 pico- p picofarad (pF), picosecond (psec)
UNITS
Physical quantity MKSA unit CGS Gaussian unit
length meter (m) centimeter (¢cm) = 107 m
mass kilogram (kg) gram (g) = 107 % kg
time second (sec) second (sec)
force newton (N) = kg-m/sec? dyne = 10" N
energy joule (J) = N-m erg =10"7]J
power watt (W) = J/sec erg/sec = 1077 W
-9
lectri lomb (C t 1 = c
electric charge coulomb (C) statcoulomb 5998

electric current

ampere (A) = C/sec

abampere = 10 A

electric potential volt (V) = J/C statvolt = 2.998 x 10*°V
electric field volt/meter or newton/coulomb

magnetic field (B) Webers/meter? (Wb/m?) gauss = 107* Wh/m?
resistance ohm () = volt/ampere

capacitance farad (F) = coulomb/volt

inductance henry (H) = volt-second/ampere
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constants

A list of physical constants which may be needed for your laboratory work
is given in the table of Fundamental Physical Constants. The fundamental
constants are given in MKSA units. In practical calculations, other units
such as electron volts or atomic mass units are sometimes more convenient
to use than the basic MKSA units. Some of the constants and combinations
of constants that frequently occur are given with various units in the table
of Other Useful Constants. A few commonly used conversion factors are

. also given.

FUNDAMENTAL PH.YSICAL' CONSTANTS

Name Symbol Value

Speed of light ¢ 2.998 x 10® m/sec
Charge of electron e 1.602 x 10~'° coul
Mass of electron m 9.109 x 1073 kg
Mass of neitron . m, 1.675 x 10?7 kg
Mass of proton ; m, 1.672 x 10727 kg
Planck's constant h 6.626 x 1073* joule sec

: h=hl2n - 1.054 x 1073* joule sec
Permittivity of free space , 2 8.854 x 1072 farad/m

1/4ne, 8.988 x 10° m/farad
Permeability of free space * o 4n x 1077 weber/amp m
Boltzmann's constant k 1.380 x 10~2? joule/K
Gas constant R 8.314 joules/mole K |
Avogadro’s number : No 6.023 x 10** molecules/mole
Mechanical equivalent of heat 7 4.186 joules/cal
Gravitational constant G 6.67 x 10~ "' N-m?/kg?
OTHER USEFUL CONSTANTS
Name Symbol Value
Planck’s constant h 4.136 x 1073 eV sec
Boltzmann's constant k 8.617 x 1073 eV/K
Coulomb constant e*/4ne, 1442ev A
Electron rest energy me? 0.5110 MeV
Proton rest energy M c? 938.3 MeV
Energy equivalent of 1 amu Mc? 931.5 MeV
Electron magnetic moment = eh/2m 0.9273 x 10~ 23 joule m?/weber
Bohr radius a = 4ngoh*/me? 0.5292 x 107'°m
Electron Compton wavelength Ao = hime 2426 x 1072 m
Fine-structure constant a = e*/Aneghic 1/137.0
Classical electron radius r, = e*/4mgymc? 2818 x 107 m
Rydberg constant R, 1.097 x 10°"m
_Conversion factors
eV = 1.602 x 107" joule
1A=10""m

1amu = 1.661 x 107 %7 kg « 931.5 MeV -




INTRODUCTION

mathematics and statistics

The first two experiments in this uni: review some of the mathematics that
you will use in your introductory physics course. This review will take the
form of laboratory activities in which you will develop certain relations
empirically. We begin with the calculus and introduce differentiation and
integration in an operational way. Next we consider several special functions
which are particularly useful in physics—trigonometric and exponential
functions.

In the remaining experiments in this unit you will learn a few basic concepts
in probability and statistics, and you will see some applications of these con-
cepts to physical measurements. (These experiments need not be performed
at the beginning of the laboratory sequence but can be introduced at any
time.) Because of the central role of measurements in all of science, these
concepts are of great importance. In all branches of science we deal with
numbers which originate in experimental observations. In fact, the very
essence of science is discovering and using correlations among quantitative
observations of physical phenomena.

Statistical considerations are important for two reasons. First, measure-
ments are never exact ; the numbers which result are of very little value unless
we have some idea of the extent of their inaccuracy. If several numbers are
used to compute a result, we need to know how the inaccuracies of the indi-
vidual numbers influence the inaccuracy of the final result. In comparing a
theoretical prediction with an experimental result, we need to know some-
thing about the accuracies of both if anything intelligent is to be said about
whether or not they agree. By considering the statistical behavior of errors of
observation we can deal with these problems systematically to obtain results
which are as precise as possible and whose remaining uncertainties are known.

A second reason for the importance of statistical concepts is that some
physical laws are intrinsically statistical in nature. A familiar example is the
radioactive decay of unstable nuclei. In a sample of a given unstable element,
we have no way of predicting when any individual nucleus will decay, but we
can deseribe in statistical terms how many are likely to decay in a given time
interval, how many will probably be left after a certain time, and so forth.
Thus, in this case, we deal not with precise predictions of events but with
probabilities of various combinations of events. In the development of quan-
tum mechanics. probability theory is of even more fundamental importance.






AVERAGE VELOCITY

INSTANTANEOUS VELOCITY

s IS

derivatives and integrals

introduction

Although the ideas of the calculus can be introduced without reference to any
particular physical situation, we prefer to show the physical usefulness of the
basic concepts by discussing a particular laboratory situation.

experiment

We shall consider the motion of a cart along a straight track. The position
of the cart is described at any instant by giving its distance from some refer-
ence point on the track. We call this distance x; clearly, it varies with time (2)
when the cart moves, so x is a function of .

We now tilt the track slightly and release the cart at time ¢ = 0 from the
reference point x = 0, which we take near the top of the track. Then we
measure the position at a succession of times, using a multiple-flash photo-
graph, a spark timer, or some other means. The spark timer, to be discussed
in more detail in Experiment M-1, uses a high-voltage pulse which causes a
spark to jump from cart to track at a succession of equally spaced time inter-
vals. The spark positions are recorded as holes in a strip of paper laid along
the track, thus providing a permanent record of the'successive positions.

In a certain experiment, the data obtained were as shown in Table 1. This
table also includes additional columns for calculations to be described later.

Plot the data given in Table 1 on a sheet of graph paper. (K & E 46-1320,
which has 10 x 10 divisions to the half inch, is suitable.) Plot time along the
long direction and displacement along the short direction. Draw a smooth
curve through the data points.

The average velocity during a time interval between 7, and ¢, in which the
displacement has changed from x, to x, is defined as

X3 =x,

(M

U=
by oty

From the data given in Table | find the average velocity during the first
second; during the first 10-sec interval; during the first 20-sec interval;
during the second 10-sec interval.

The instantaneous velocity may be thought of as the value of the averagé
velocity when the time interval becomes extremely short, As an example let us
x 5

w0
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TABLE 1 rimt,_-,‘ sec" Displacement x, m Ax, m Vell:/(::: v, Acc::e/;zggn a.
0.000 0.0000 WW\\\\\\\\\\\\\\\\\\\ %
AE TN

attempt from the data given in Table 1 to find the instantaneous velocity at
t = 10'sec.

We use the shorthand notation Ax = x, — x, and At = 1, — t,, where
the symbol A is the Greek letter delta. The composite symbol Ax can be called
“change in x'; it is not the product of A and x! Fill in Table 2 for &.

Make a plot of the average velocity ¢ as a function of the time interval At.
Extrapolate your data to Ar = 0. What is your estimate of the instantaneous
velocity at ¢ = 10 sec? What we have done graphically is to find the value
which ¢ approaches as At approaches zero; this is called the limit of & as At
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TABLE 2

ACCELERATION

derivatives and integrals MS -1

13 1, At Ax 7 a
0 20
5 15
8 12
9 11

approaches zero and is the mathematical definition of instantaneous velocity.
This defines the instantaneous velocity :

Ax
v= lim — (2)
a0 Al

This expression is also called the derivative of x with respect to ¢.

It may seem odd and even inconsistent that we have used velocities over
definite time intervals to define instantaneous velocity at a single point, where
no time interval is involved. Yet we know intuitively that instantaneous
velocity at a point is a sensible concept. The concept of derivative which we
have just discussed provides a sound mathematical basis for the idea of an
instantaneous velocity (or any other instantaneous rate of change), and this
is its most fundamental significance.

Because the velocity is changing slowly, the average velocity for an interval
At = 1 sec and the instantaneous velocity at the center of the interval should
be reasonably close. Using At = 1 sec as a time interval, fill in the velocity
column in Table 1 from ¢ = 0.500 to 19.500 sec. '

With reference to your plot of Table 1 the average velocity between 0 and 20
sec is just the slope of the c¢hord drawn through the displacement data points
at r = 0 and 20 sec. Note that the slope of a line is not equal to the tangent of
the angle the line makes with the horizontal, as it would be if the vertical and
horizontal scales were the same. Here the scales are different, and have
different units; to find the slope of the line we choose two points, find the
differences x, — x, and ¢, — t,, and take their quotient. Draw this chord.
Also draw chords for the other intervals given in Table 2. Draw the tangent to
your curve at ¢ = 10 sec. Compute the slope of the tangent and compare with
your extrapolated value of average velocity in the limit Az goes to zero. What
is the relation between instantaneous velocity and the slope of the tangent ?

Using the same graph on which you plotted the displacement data of Table 1,
also plot the velocity data, using a new coordinate scale on the right side of
the paper. What can you say about the velocity as a function of time? The
rate of change of velocity is called the acceleration. The average acceleration
during a time interval At = 1, — 1,, during which the velocity changes by an
amount Av = v, — v,, is defined as

Av ' v, =,
At ity — ity

(©)

a:
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DIFFERENTIATION

ACCELERATION DATA

VELOCITY

What is the average acceleration in the interval between ¢+ = 0 and 20 sec?
Fill in Table 2 for @. The instantaneous acceleration is defined as the limit of
the average acceleration as the time interval Ar approaches zero:

' Av
a = lim — 4
a0 A i

Assuming that an interval of 1 sec is sufficiently short to give a good approx-
imation of the instantaneous acceleration a, complete Table 1 from ¢ = 1.000
to 19.000 sec. Note that the average acceleration between ¢ = 0 and 20 sec is
just the slope of the chord drawn through these velocity data points. Draw
chords through your velocity data for the other time intervals in Table 2.
Note that as the time interval becomes shorter the slope of the chord approach-

" es the slope of the velocity curve. What is the relation between the slope of the

tangent and the instantaneous acceleration?
Plot your acceleration data on the same sheet of graph paper, showing a
new scale for acceleration.

The limit indicated in Eq. (2) is called the derivative of x with respect to time.
The process of determining the instantaneous velocity if x is known as a
function of time forall times is called differentiation. This operation is written
symbolically as

dx Ax__

_— = l. _— =

dt Af'o A’ )
Similarly, the instantaneous acceleration is expressed as

dv Av

dt A,ITO At g ©

We introduce the process of integration by considering again the cart on an
inclined track. Let us imagine that this cart has mounted on it an accelerom-

‘eter* and that we are able to obtain directly instantaneous values of the

acceleration of the cart. We shall now see how it is possible from the accelera-
tion alone to determine the velocity as a function of time (knowing that the
cart started from rest) and the position data (knowing that the cart was at
x = 0att = 0). The accelerometer data for the cart are given in Table 3. This
table also includes additional columns for calculations to be described below.
Using a new sheet of graph paper of the same kind as used earlier, plot the
data for acceleration as a function of time.

We may use Eq. (3) to find the change in velocity during any time interval:
v, = vy + alt, — 1) v

That is, the velocity v, at the end of a time interval (z, — ;) is equal to the
velocity v, at the beginning of the interval plus the average acceleration @ over

A device for measuring instantaneous acceleration.



TABLE 3

derivatives and integrals MS-1

Time 1, sec  Acceleration a, a A, Velocity v, | Displacement x. m
m/sec? m/sec m/sec
0.000 0.01333 &\\m \\\\\\\\\\\\\\\ 0.00000
1.000 0.01206
2,000 0.01192 |
3.000 0.00988
4.000 0.00894
5.000 0.00809
6.000 0.00732
7.000 0.00662
8.000 0.00599
9.000 0.00542
10.000 0.00490
11.000 0.00444
12.000 0.00402
13.000 0.00363 »
14.000 0.00329
15.000 : 0.00298
16.000 0.00268
17.000 0.00244
18.000 0.00220
19.000 0.00200.
20.000 0.00180 \\\\\\\\\\\\\\ m\\\\\

the interval multiplied by the time interval (1, — ¢,). How can we use the data
of Table 3 to determine velocity? Note that this table gives the instantaneous
acceleration and not the aveérage acceleration. However, as we have seen, if -
the time interval is short enough the average acceleration and the instanta-
neous acceleration at the center of the interval are approximately equal.

As an example, we find the velocity change in the interval from ¢ = 0.500
to 1.500 sec. We take the average acceleration a in this interval to be the
instantaneous acceleration at the center (¢ = 1.000 sec), which is 0.01206
m/sec?. Thus, according to Eq. (7), the velocity change during this interval is

7
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DISPLACEMENT

just 0.01206 m/sec. Similarly, the velocity change in the interval from 1.500
to 2.500 sec is 0.01192 m/sec, and soon.

The first interval (r = 0.000 to 0.500 sec) requires special treatment, being
only half as long as the others. The instantaneous acceleration at 1 = 0.500
sec is approximately equal to the average of the values at 0.000 and 1.000 sec,
which -is (0.01333 m/sec? + 0.01206 m/sec?). Then the instantaneous
acceleration at the center of the interval (i.e., 7 = 0.250 sec) is approximately
the average of this value for ¢ = 0.0500 sec and the value for ¢ = 0.000 sec.
The end result of all this is that for the first interval,

a = (0.01333 m/sec? + (2)0.0126 m/sec? = 0.01302 m/sec?

This is equivalent to taking a weighted average of the values of @ at 0.000 and
1.000 sec, weighting the former three times as much as the latter because the
center of the interval (0.250 sec) is “‘three times as close” to 0.000 as to
1.000 sec.

Thus we find that the velocity change from 0.000 to 0.500 sec is 0.00651
m/sec. Since v = 0 at ¢ = 0, this is also the actual velocity at 0.500 sec. Now,
using the successive changes in v, we can compute the actual values at
t = 1.500 sec, 2.500 sec, and so on. The interval between 19.500 and 20.000
sec is handled the same way as for the first interval. Compute these velocities
and record the results in Table 3. Plot your velocity data on the same sheet of
graph paper used for the accelerometer data, and compare this plot with your
earlier plot of velocity. as determined from the displacement data. Note that
the velocity of the cart at any time 7 is just the area under the acceleration
curve from 7 = 0 to the final time ¢, If the initial velocity at time ¢ = 0.000 is
not zero but some initial value v, this area still gives the total change during
the interval, and the final velocity is then the sum of v, and this change.

From Egq. (1) we have for the displacement
Xy, =X, + Ut — ;) (8)

This equation is analogous to Eq. (7) and states that the displacement at the
end of an interval is equal to the displacement at the beginning of the interval
plus the product of the average velocity over the interval and the duration of
the interval. If the interval is sufficiently short, the average velocity should be
just the velocity at the midpoint. As an example we compute the displacement
at ¢+ = 1.000 sec. We take the average velocity between ¢ = 0.000 and 1.000
sec to be the value computed at ¢ = 0.500 sec, namely, v = 0.00651 m/sec.
Then the displacement at 1 = 1.000 sec will be 0.00651 m. Similarly, the dis-
placement at ¢ = 2.000 sec may be computed to be

x = 0.00651 + 0.01857 At = 0.02508 m

In this way determine the displacement as a function of time. Note that the dis-
placement at time ¢ is the area under the velocity curve from ¢ = 0 to time 7.
Compare your calculated displacement data with the direct data given in
Table 1.

From the above discussion we see that the total velocity change in any time
interval can be obtained by dividing this interval into many smaller intervals,
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which we may call Az;, multiplying each interval by the average value of a in
that interval, denoted by @, , and summing these products. Symbolically,

N
v, =10+ Y, 4 AL 9)
i=1
If the acceleration is known continuously for every instant of time, the time
intervals can be made arbitrarily small, and we speak of the /imit of this
expression as all the A7; — 0 and N — co. The usual notation is

N t
lim Y a A = J adt (10)
zlsv:.‘ao i=1 0

and the expression is called the inregral of a. Thus we have

v,=vo+J.adt (1n

0

Similarly,

0

t
x,=x0+J.L'dt

questions

Although the displacement data appeared to lie on a smooth curve and the
computed velocity data appeared to lie on a smooth curve, some scatter
appears in the acceleration data. Explain the origin of this scatter.

What would happen to the computed velocity data if larger time intervals
were taken ? What would happen to the computed accelerations?

In determining velocity from acceleration, what would be the deviation of the
computed velocity if larger intervals were taken? What would be the devia-
tion of the computed displacement ? Does this explain any discrepancy that
you obtain between direct displacement data and the displacement as
computed from accelerometer data ?



