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Preface

The revolt against the ancient world view of a universe centred upon the earth,
which was initiated by Copernicus and further developed by Kepler, Galileo and
Newton, reached its natural termination in Einstein’s theories of relativity.
Starting from the concept that there exists a unique privileged observer of the
cosmos, namely man himself, natural philosophy has journeyed to the opposite
pole and now accepts as a fundamental principle that all observers are equivalent,
in the sense that each can explain the behaviour of the cosmos by application of
the same set of natural laws. Another line of thought whose complete
development takes place within the context of special relativity is that pioneered
by Maxwell, electromagnetic field theory. Indeed, since the Lorentz transform-
ation equations upon which the special theory is based constitute none other than
the transformation group under which Maxwell’s equations remain of invariant
form, the relativistic expression of these equations discovered by Minkowski is
more natural than Maxwell’s. In the history of natural philosophy, therefore,
relativity theory represents the culmination of three centuries of mathematical
modelling of the macroscopic physical world: it stands at theend of an eraand isa
magnificent and fitting memorial to the golden age of mathematical physics which
came to an end at the time of the First World War. Einstein’s triumph was also his
tragedy; although he was inspired to create a masterpiece, this proved to be a
monument to the past and its very perfection a barrier to future development.
Thus, although all the implications of the general theory have not yet been
uncovered, the barrenness of Einstein’s later explorations indicates that the
growth areas of mathematical physics lie elsewhere, presumably in the fecund soil
of quantum and elementary-particle theory.

Nevertheless, relativity theory, especially the special form, provides a found-
ation upon which all later developments have been constructed and it seems
destined to continue in this role for a long time yet. A thorough knowledge of its
elements is accordingly a prerequisite for all students who wish to understand
contemporary theories of the physical world and possibly to contribute to their
expansion. This being universally recognized, university courses in applied
mathematics and mathematical physics commonly include an introductory
course in the subject at the undergraduate level, usually in the second and third
years, but occasionally even in the first year. This book has been written to
provide a suitable supporting text for such courses. The author has taught this
type of class for the past twenty-five years and has become very familiar with the
difficulties regularly experienced by students when they first study this subject;
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the identification of these perplexities and their careful resolution has therefore
been one of my main aims when preparing this account. To assist the student
further in mastering the subject, I have collected together a large number of
exercises and these will be found at the end of each chapter; most have been set as
course work or in examinations for my own classes and, I think, cover almost all
aspects normally treated at this level. It is hoped, therefore, that the book will also
prove helpful to lecturers as a source of problems for setting in exercise classes.

When preparing my plan for the development of the subject, I decided to
disregard completely the historical order of evolution of the ideas and to present
these in the most natural logical and didactic manner possible. In the case of a
fully established (and, indeed, venerable) theory, any other arrangement for an
introductory text is unjustifiable. As a consequence, many facets of the subject
which were at the centre of attention during the early years of its evolution have
been relegated to the exercises or omitted entirely. For example, details of the
seminal Michelson-Morley experiment and its associated calculations have not
been included. Although this event was the spark which ignited the relativistic
tinder, it is now apparent that this was an historical accident and that, being
implicit in Maxwell’s principles of electromagnetism, it was inevitable that the
special theory would be formulated near the turn of the century. Neither is the
experiment any longer to be regarded as a crucial test of the theory, since the
theory’s manifold implications for all branches of physics have provided
countless other checks, all of which have told in its favour. The early controversies
attending the birth of relativity theory are, however, of great human interest and
students who wish to follow these are referred to the books by Clark, Hoffmann
and Lanczos listed in the Bibliography at the end of this book.

A curious feature of the history of the special theory is the persistence of certain
paradoxes which arose shortly after it was first propounded by Einstein and
which were largely disposed of at that time. In spite of this, they are rediscovered
every decade or so and editors of popular scientific periodicals (and occasionally,
and more reprehensibly, serious research journals) seem happy to provide space
in which these old battles can be refought, thus generating a good deal of
acrimony on all sides (and, presumably, improving circulation). The source of the
paradoxes is invariably a failure to appreciate that the special theory is restricted
in its validity to inertial frames of reference or an inability to jettison the
Newtonian concept of a unique ordering of events in time. Complete books based
on these misconceptions have been published by authors who should know
better, thus giving students the unfortunate impression that the consistency of
this system of ideas is still in doubt. I have therefore felt it necessary to mention
some of these ‘paradoxes’ at appropriate points in the text and to indicate how
they are resolved; others have been used as a basis for exercises, providing
excellent practice for the student to train himself to think relativistically.

Much of the text was originally published in 1962 under the title An
Introduction to Tensor Calculus and Relativity. All these sections have been
thoroughly revised in the light of my teaching experience, one or two sections
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have been discarded as containing material which has proved to be of little
importance for an understanding of the basics (e.g. relative tensors) and a number
of new sections have been added (e.g. equations of motion of an elastic fluid, black
holes, gravitational waves, and a more detailed account of the relationship
between the metric and affine connections). But the main improvement is the
addition of a chapter covering the application of the general theory to cosmology.
As a result of the great strides made in the development of optical and,
particularly, radio astronomy during the last twenty years, cosmological science
has moved towards the centre of interest for physics and very few university
courses in the general theory now fail to include lectures in this area.

It is a common (and desirable) practice to provide separate courses in the special
and general theories, the special being covered in the second or third under-
graduate year and the general in the final year of the undergraduate course or the
first year of a postgraduate course. The book has been arranged with this in mind
and the first four chapters form a complete unit, suitable for reading by students
who may not progress to the general theory. Such students need not be burdened
with the general theory of tensors and Riemannian spaces, but can acquire a
mastery of the principles of the special theory using only the unsophisticated tool
of Cartesian tensors in Euclidean (or quasi-Euclidean) space. In my experience,
even students who intend to take a course in the general theory also benefit from
exposure to the special theory in this form, since it enables them to concentrate
upon the difficulties of the relativity principles and not to be distracted by
avoidable complexities of notation. I have no sympathy with the teacher who,
encouraged by the shallow values of the times, regards it as a virtue that his
lectures exhibit his own present mastery of the subject rather than his
appreciation of his students’ bewilderment on being led into unfamiliar territory.
All students should, in any case, be aware of the simpler form the theory of tensors
assumes when the transformation group is restricted to be orthogonal.

As a consequence of my decision to develop the special theory within the
context of Cartesian tensors, it was necessary to reduce the special relativistic
metric to Pythagorean form by the introduction of either purely imaginary
spatial coordinates or a purely imaginary time coordinate for an event. I have
followed Minkowski and put x, = ict; thus, the metric has necessarily been taken
in the form

ds? = dx,2 +dx,? +dx;% +dx,? = dx? +dy? + dz? — *dr?

and ds has the dimension of length. I have retained this definition of the interval
between two events observed from a freely falling frame in the general theory; this
not only avoids confusion but, in the weak-field approximation, permits the
distinction between covariant and contravariant components of a tensor to be
eliminated by the introduction of an imaginary time. A disadvantage is that ds is
imaginary for timelike intervals and the interval parameter s accordingly takes
imaginary values along the world-line of any material body. Thus, when writing
down the equations for the geodesic world-line of a freely falling body, it is
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usually convenient to replace s by 7, defined by the equation s = ict, 7 being called
the proper time and dr the proper time interval. However, it is understood
throughout the exposition of the general theory that the metric tensor for space-
time g,; is such that ds* = g,; dx' dx’; a consequence is that the cosmical constant
term in Einstein’s equation of gravitation has a sign opposite to that taken by
some authors.

References in the text are made by author and year and have been collected
together at the end of the book.

D. F. LawDeN
Department of Mathematics,

The University of Aston in Birmingham.
May, 1981.



List of Constants

In the SI system of units:
Gravitational constant = G = 6.673 x 10" ' m® kg~ 's7?
Velocity of light = ¢ = 2.998 x 108 ms ™!
Mass of sun = 1.991 x 10°°kg
Mass of earth = 5979 x 10**kg
Mean radius of earth = 6.371 x 10°m
Permittivity of free space = &, = 8.854 x 107 !2
Permeability of free space = ug = 1.257 x 107°
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CHAPTER 1

Special Principle of Relativity. Lorentz
Transformations

1. Newton’s laws of motion

A proper appreciation of the physical content of Newton’s three laws of motion is
an essential prerequisite for any study of the special theory of relativity. It will be
shown that these laws are in accordance with the fundamental principle upon
which the theory is based and thus they will also serve as a convenient
introduction to this principle.

The first law states that any particle which is not subjected to forces moves along
a straight line at constant speed. Since the motion of a particle can only be specified
relative to some coordinate frame of reference, this statement has meaning only
when the reference frame to be employed when observing the particle’s motion
has been indicated. Also, since the concept of force has not, at this point, received
a definition, it will be necessary to explain how we are to judge when a particle is
‘not subjected to forces’. It will be taken as an observed fact that if rectangular
axes are taken with their origin at the centre of the sun and these axes do not
rotate relative to the most distant objects known to astronomy, viz. the
extragalactic nebulae, then the motions of the neighbouring stars relative to this
frame are very nearly uniform. The departure from uniformity can reasonably be
accounted for as due to the influence of the stars upon one another and the
evidence available suggests very strongly that if the motion of a body in a region
infinitely remote from all other bodies could be observed, then its motion would
always prove to be uniform relative to our reference frame irrespective of the
manner in which the motion was initiated.

We shall accordingly regard the first law as asserting that, in a region of space
remote from all other matter and empty save for a single test particle, a reference
frame can be defined relative to which the particle will always have a uniform
motion. Such a frame will be referred to as an inertial frame. An example of such
an inertial frame which is conveniently employed when discussing the motions of
bodies within the solar system has been described above. However, if S is any
inertial frame and S'is another frame whose axes are always parallel to those of S
but whose origin moves with a constant velocity u relative to S, then S also is
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inertial. For, if v, ¥ are the velocities of the test particle relative to S, S respectively,
then

Yy=v—u (1.1)

and, since v is always constant, so is ¥. It follows, therefore, that a frame whose
origin is at the earth’s centre and whose axes do not rotate relative to the stars can,
for most practical purposes, be looked upon as an inertial frame, for the motion of
the earth relative to the sun is very nearly uniform over periods of time which are
normally the subject of dynamical calculations. In fact, since the earth’s rotation
is slow by ordinary standards, a frame which is fixed in this body can also be
treated as approximately inertial and this assumption will only lead to
appreciable errors when motions over relatively long periods of time are being
investigated, e.g. Foucault’s pendulum, long-range gunnery calculations. A frame
attached to a non-rotating spaceship, whose rocket motor is inoperative and
which is moving in a negligible gravitational field (e.g. in interstellar space),
provides another example of an inertial frame. Since the stars of our galaxy move
uniformly relative to one another over very long periods of time, the frames
attached to them will all be inertial provided they do not rotate relative to the
other galaxies.

Having established an inertial frame, if it is found by observation that a particle
does not have a uniform motion relative to the frame, the lack of uniformity is
attributed to the action of a force which is exerted upon the particle by some
agency. For example, the orbits of the planets are considered to be curved on
account of the force of gravitational attraction exerted upon these bodies by the
sun and when a beam of charged particles is observed to be deflected when a bar
magnet is brought into the vicinity, this phenomenon is understood to be due to
the magnetic forces which are supposed to act upon the particles. If v is the
particle’s velocity relative to the frame at any instant ¢, its acceleration a = dv/dt
will be non-zero if the particle’s motion is not uniform and this quantity is
accordingly a convenient measure of the applied force f. We take, therefore,

fca
or f=ma (1.2)

where m is a constant of proportionality which depends upon the particle and is
termed its mass. The definition of the mass of a particle will be given almost
immediately when it arises quite naturally out of the third law of motion.
Equation (1.2)is essentially a definition of force relative to an inertial frame and is
referred to as the second law of motion. It is sometimes convenient to employ a
non-inertial frame in dynamical calculations, in which case a body which is in
uniform motion relative to an inertial frame and is therefore subject to no forces,
will nonetheless have an acceleration in the non-inertial frame. By equation (1.2),
to this acceleration there corresponds a force, but this will not be attributable to
any obvious agency and is therefore usually referred to as a “fictitious’ force. Well-



3

known examples of such forces are the centrifugal and Coriolis forces associated
with frames which are in uniform rotation relative to an inertial frame, e.g. a
frame rotating with the earth. By introducing such “fictitious’ forces, the second
law of motion becomes applicable in all reference frames. Such forces are called
inertial forces (see Section 44).

According to the third law of motion, when two particles P and Q interact so as
to influence one another’s motion, the force exerted by P on Q is equal to that
exerted by Q on P but is in the opposite sense. Defining the momentum of a particle
relative to a reference frame as the product of its mass and its velocity, it is proved
in elementary textbooks that the second and third laws taken together imply that
the sum of the momenta of any two particles involved in a collision is conserved.
Thus, if m;, m, are the masses of two such particles and u,, u, are their respective
velocities immediately before the collision and v,, v, are their respective velocities
immediately afterwards, then

m;u, +m2ll2 =m;Vvy +m2V2 (13)
: m
Le. Zuy—-vy)=v, —uy (14
m

This last equation implies that the vectors u, —v,, v, —u, are parallel, a result
which has been checked experimentally and which constitutes the physical
content of the third law. However, equation (1.4) shows that the third law is also,
in part, a specification of how the mass of a particle is to be measured and hence
provides a definition for this quantity. For

m _ Vi —uy
my l“z—"zl

(1.5)

and hence the ratio of the masses of two particles can be found from the results of
a collision experiment. If, then, one particular particle is chosen to have unit mass
(e.g. the standard kilogramme), the masses of all other particles can, in principle,
be determined by permitting them to collide with this standard and then
employing equation (1.5).

2. Covariance of the laws of motion

It has been shown in the previous section that the second and third laws are
essentially definitions of the physical quantities force and mass relative to a given
reference frame, In this section, we shall examine whether these definitions lead to
different results when different inertial frames are employed.

Consider first the definition of mass. If the collision between the particles m,,
m, is observed from the inertial frame S, let u,, B, be the particle velocities before
the collision and v,, ¥, the corresponding velocities after the collision. By
equation (1.1),

u; =u, —u, etc. 2.1
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and hence

Vi—Up=vi—u, UV =0V, (2.2)
It follows that if the vectors v, —u,, u, — v, are parallel, so are the vectors v, —u,
i, —v, and consequently that, in so far as the third law is experimentally
verifiable, it is valid in all inertial frames if it is valid in one. Now let m, , m, be the
particle masses as measured in S. Then, by equation (1.5),

my [y e m (2.3)
my U=y Jug—vy| omy
But, if the first particle is the unit standard, then m; = m; = 1 and hence
my = m, 24)

i.e. the mass of a particle has the same value in all inertial frames. We can express
this by saying that mass is an invariant relative to transformations between
inertial frames.

By differentiating equation (1.1) with respect to the time ¢, since u is
constant it is found that

)

=a (2.5)

where a, a are the accelerations of a particle relative to S, S respectively. Hence, by
the second law (1.2), since #m = m, it follows that

f=f (2.6)

i.e. the force acting upon a particle is independent of the inertial frame in which 1t
is measured.

It has therefore been shown that equations (1.2), (1.4) take precisely the same
form in the two frames, S, S, it being understood that mass, acceleration and force
are independent of the frame and that velocity is transformed in accordance with
equation (1.1). When equations preserve their form upon transformation from
one reference frame to another, they are said to be covariant with respect to such a
transformation. Newton’s laws of motion are covariant with respect to a
transformation between inertial frames.

3. Special principle of relativity

The special principle of relativity asserts that all physical laws are covariant with
respect to a transformation between inertial frames. This implies that all observers
moving uniformly relative to one another and employing inertial frames will be in
agreement concerning the statement of physical laws. No such observer,
therefore, can regard himself as being in a special relationship to the universe not
shared by any other observer employing an inertial frame; there are no privileged
observers. When man believed himself to be at the centre of creation both
physically and spiritually, a principle such as that we have just enunciated would
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have been rejected as absurd. However, the revolution in attitude to our physical
environment initiated by Copernicus has proceeded so far that today the
principle is accepted as eminently reasonable and very strong evidence contradict-
ing the principle would have to be discovered to disturb it as the foundation upon
which theoretical physics is based. It is this principle which guarantees that
observers inhabiting distant planets, belonging to stars whose motions may be
very different from that of our own sun, wiil nevertheless be able to explain their
local physical phenomena by application of the same physical laws we use
ourselves.

It has been shown already that Newton’s laws of motion obey the principle. Let
us now transfer-our attention to another set of fundamental laws governing non-
mechanical phenomena, viz. Maxwell’s laws of electrodynamics. These are more
complex than the laws of Newton and are most conveniently expressed by the
equations

curl E= —dB/dt 3.1
curl H= j+dD/ot 3.2)
divD=p (3.3)
divB=20 (3.4)

where E, H are the clectric and magnetic intensities respectively, D is the
displacement, B is the magnetic induction, j is the current density and p is the
charge density (SI units are being used). Experiment confirms that these
equations are valid when any inertial frame is employed. The most famous such
experiment was that carried out by Michelson and Morley, who verified that the
velocity of propagation of light waves in any direction is always measured to be
c (=3 x10®ms™!) relative to an apparatus stationary on the earth. As is well
known, light has an electromagnetic character and this result is predicted by
equations (3.1)-(3.4). However, the velocity of the earth in its orbit at any time
differs from its velocity six months later by twice the orbital velocity, viz. 60km/s
and thus, by taking measurements of the velocity of light relative to the earth on
two days separated by this period of time and showing them to be equal, it is
possible to confirm that Maxwell’s equations conform to the special principle of
relativity. This is effectively what Michelson and Morley did. However, this
interpretation of the results of their experiment was not accepted immediately,
since it was thought that electromagnetic phenomena were supported by a
medium called the aether and that Maxwell’s equations would prove to be valid
only in an inertial frame stationary in this medium, i.e. the special principle of
relativity was denied for electromagnetic phenomena. It was supposed that an
‘aether wind’ would blow through an inertial frame not at rest in the aether and
that this would have a disturbing effect on the propagation of electromagnetic
disturbances through the medium, in the same way that a wind in the atmosphere
affects the spread of sound waves. In such a frame, Maxwell’s equations would (it
was surmised) need correction by the inclusion of terms involving the wind
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velocity. That this would imply that terrestrial electrical machinery would behave
differently in winter and summer does not appear to have raised any doubts!

After Michelson and Morley’s experiment, a long controversy ensued and,
though this is of great historical interest, it will not be recounted in this book. The
special principle is now firmly established and is accepted on the grounds that the
conclusions which may be deduced from it are everywhere found to be in
conformity with experiment and also because it is felt to possess a priori a high
degree of plausibility. A description of the steps by which it ultimately came to be
appreciated that the principle was of quite general application would therefore be
superfluous in an introductory text. It is, however, essential for our future
development of the theory to understand the prime difficulty preventing an early
acceptance of the idea that the electromagnetic laws are in conformity with the
special principle.

Consider the two inertial frames S, S. Suppose that an observer employing S
measures the velocity of a light pulse and finds it to be c. If the velocity of the same
light pulse is measured by an observer employing the frame S, let this be €. Then,
by equation (1.1),

T=c—u (3.5)

and it is clear that, in general, the magnitudes of the vectors €, ¢ will be different. It
appears to follow, therefore, that either Maxwell’s equations (3.1)}-(3.4) must be
modified, or the special principle of relativity abandoned for electromagnetic
phenomena. Attempts were made (e.g. by Ritz) to modify Maxwell’s equations,
but certain consequences of the modified equations could not be confirmed
experimentally. Since the special principle was always found to be valid, the only
remaining alternative was to reject equation (1.1) and to replace it by another in
conformity with the experimental result that the speed of light is the same in all
inertial frames. As will be shown in the next section, this can only be done at the
expense of a radical revision of our intuitive ideas concerning the nature of space
and time and this was very understandably strongly resisted.

4. Lorentz transformations. Minkowski space-time

The argument of this section will be founded on the following three postulates:

Postulate 1. A particle free to move under no forces has constant velocity in
any inertial frame.

Postulate 2. The speed of light relative to any inertial frame is ¢ in all
directions.

Postulate 3. The geometry of space is Euclidean in any inertial frame.

Let the reference frame S comprise rectangular Cartesian axes Oxyz. We shall
assume that the coordinates of a point relative to this frame are measured by the
usual procedure and employing a measuring scale which is stationary in § (it is
necessary to state this precaution, since it will be shown later that the length of a
bar is not independent of its motion). It will also be supposed that standard



