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Preface

In spring 1970 I gave a course in Diophantine Approximation at the
University of Colorado, which culminated in simultaneous approximation
to algebraic numbers. A limited supply of mimeographed Lecture Notes was
soon gone. The completion of these new Notes was greatly delayed by my
decision to add further material.

The present chapter on simultaneous approximations to algebraic
numbers is much more general than the one in the original Notes. This
generality is necessary to supply a basis for the subsequent chapter on
norm form equations. There is a new last chapter on approximation by
algebraic numbers. I wish to thank all those, in particular Professor
C.L. Siegel, who have pointed out a number of mistakes in the original
Notes. I hope that not too many new mistakes have crept into these new
Notes.

The present Notes contain only a small part of the theory of Dio-
phantine Approximation, The main emphasis is on approximation to
algebraic numbers. But even here not everything is included. I follow
the approach which was initiated by Thue in 1908, and further developed
by Siegel and by Roth, but I do not include the effective results due to
Baker. Not included 1is approximation in p -adic fields, for which
see e.g. Schlickewei [1976, 1977], or approximation in power series
fields, for which see e.g., Osgood [1977] and Ratliff [1978]. Totally
missing are Pisot-Vijayaraghavan Numbers, inhomogeneous approximation
and uniform distribution. For these see e.g. Cassels [1957] and Kuipers

and Niederreiter [1974]. Also excluded are Weyl Sums, nonlinear approxi-



\%

mation and diophantine inequalities involving forms in many variables.
My pace is in general very leisurely and slow. This will be
especially apparent when comparing Baker's [1975] chapter on approximation
to algebraic numbers with my two separate chapters, one dealing with Roth's
Theorem on approximation to a single algebraic number, the other with
simultaneous approximation to algebraic numbers.
Possible sequences are chapters
I, II, III, for a reader who is interested in game and measure theoretic
results, or

I, II, V, for a reader who wants to study Roth's Theorem , or

I, I1, Iv, VvV, VI, VII (§ 11, 12), VIII (§ 7-10), for a general theory of
simultaneous approximation to algebraic numbers, or

I, Ir, IV, V, VI, VII, if the goal is norm form equations, or

I, II, VIII (§ 1-6, §11), if the emphasis is on approximation by algebraic

numbers .

December 1979 W.M. Schmidt



Notation

A real number £ may uniquely be written as

g=L[gl+{g} ,

where [E] , the integer part of E , is an integer, and where {g} |,

the fractional part of € , satisfies 0 = {g} < 1

llgll| = min({g€},1-{€}) is the distance from E to the nearest integer,
U denotes the unit interval 0 =g< 1
R" denotes the n -dimensional real space,

E" denotes Euclidean n - space.

L]

»¥s+.. will denote vectors; so x = (xl,...,xn) < Rp , or
m
X = (xl,...,xm) € R , etc.
Addition and multiplication of vectors by scalars is obvious.

en will denote basis vectors.

LR

MK , where )\ > 0 and where K is in Rr® , is the set of elements

AX with

%

€ K

6ij is the Kronecker Symbol.

X,Y,... , in general will be variables, while x,y,... will be
real, usually rational integers. But this rule is sometimes hard to
follow: In chapter IV, the symbols X,Y,... will also be used to denote
coordinates in compound spaces.

[ET = max(|x1|,...,|xn|) if X = (xl,...,xn) . However

fET , where E = (pl,...,pn) has coordinates in an algebraic
number field K , is given by [E] = max(|pfl)|,...,|§élﬁ,...,[ﬁ{k)l,...,|pék)[),
if ﬁ(l) =p , p(z),...,ﬁ(k) are the conjugates of an elements f3

(But, on p. 173 , ﬁﬂ for a single element Y has a different meaning.)
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{;] is the maximum absolute value of the coefficients of a poly-
nomial P ,

Q is the field of rationals,

R 1is the field of reals,

€ is the field of complex numbers.

[L :K] 1is the degree of a field extension L over K

{a,b,...,w} denotes the set consisting of a,b,...,w, and

~ denotes a set theoretic difference.

<< 1is the Vinogradov symbol. Thus e.g. f(x) < g(g) means that
|f(§)| = cig(§)| with a constant ¢ . Often this "implied'" constant c¢
may depend on extra parameters, such as the dimension, etc.

>> << , in the context f << g , means that both f << g and
g << £

o , the "little o" , in the context f(n) = o(g(n)) , means that
f(n)/g(n) tends to 0 as n >

g.c.d. denotes the greatest common divisor of integers.

Starred Theorems, such as Theorem 6A* |, are not proved in these Notes.
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I. Approximation to Irrational Numbers by Rationals.

References: Dirichlet (1842), Hurwitz (1891), Perron (1954),
Cassels (1957).

§1. Dirichlet's Theorem.

Given a real number @ , let [a] , the integer part of « , denote
the greatest integer =< @ , and let {a} =a - [@]. Then {a} is the
fractional part of « , and satisfies 0 < {@} <1 . Also, let [
denote the distance from « to the nearest integer. Then always

1
0= s3 .

THEOREM 1A. (Dirichlet (1842)). Let a and Q be real numbers

with Q > 1 . Then there exist integers p,q such that 1 < q < Q
1
Q

and |eq-p| <

Proof. First assume that Q 1is an integer. Consider the following

Q + 1 numbers:

0,1,{a},{2a},...,{(q-1)a} .

They all lie in the unit interval 0 < x =< 1 . We divide the unit

interval into Q subintervals
< x < — (u=0,1,...,Q-1) ,

but with < replaced by < if u = Q-1 . At least one such subinterval
contains two (or more) of the Q+1 numbers above. Hence there are
integers T12T58758, with 0 =< r, <Q (i=1,2) and r; f r, such

that

l(rla —sl) - (rza 'Sz)l < % s



> = = = =
If, say, ry r, put q =Ty > P S1-8, - Then 1 < q<Q
and ,qa-—pl < é , proving the theorem when Q is an integer.

Next, suppose Q 1is not an integer. Apply what has already been

proved to Q’ =[Q]+1 . Then 1< q<Q’ implies 1 < q < [Q] , whence

1<q<Q, and the theorem is true for Q .

Remark. The two inequalities in Dirichlet's Theorem yield

COROLLARY 1B. Suppose that « is irrational. Then there exist

infinitely many pairs p,q of relatively prime integers with

1

(1.1) |a - Jél <? .

Proof. Dirichlet's Theorem obviously remains true if we ask for
relatively prime integers p,q satisfying 1 < q < Q and laq - p' < k- 5

Q

Since «@ 1is irrational, a@q-p 1is never zero, and hence for any given

P»>q , the inequality Iaq-pl < % can only be satisfied for Q < Qo(p,q).

Hence as Q = ® , there will be infinitely many distinct pairs p,q

of relatively prime integers occuring in Dirichlet's Theorem.

Remark. This corollary is not true if « 1is rational. For suppose
that @ =3 . If @ #A2 | then |a- B = 8. P - |au-pv L
v q q v q vq vq

and therefore (1.1) can be satisfied by only finitely many pairs p,q

of relatively prime integers.

§2. Farey Series.

Definition. The Farey series Fn of order n(2 1) is the

sequence of rationals in their lowest terms between 0 and 1 with



denominators < n , written in ascending order. For example,

THEOREM 2A. £ % » —; are successive terms in ?n , then

h’k - hk’ =1
We need

LEMMA 2B. Suppose that x = (x;,X,) and y = (y;,y,) are

integer points in the plane, with 0 = (0,0),x,y not on a line. Suppose

further that the closed triangle with vertices

o

points but its vertices. Then

XYy = XYy T + 1.

Proof of the Lemma. Let J be the triangle mentioned above, and

let & be the closed parallelogram with vertices 0,x,y and x+y .

Then €& contains no integer points but its vertices: for suppose that

(5}

is an integer point in & , 2z ﬁ J . Then x+y -2z €T , hence

g+ y -

(3]
o

x or y , and therefore z = x + y,y or x

If p 1is any integer point, we may write p = xx + py with real

coefficients A ,p since 0,x,y are not collinear. Then p = EI + p’

where
p’ = [Mlx + [uly and p" = (A\}x+{nly .
Both p and p’ are integer points, hence so is p’ . Also p’ €& .
Since p” f XY and x + y , we have E” = 9 . Therefore
P = Ax + uy with integer coefficients A,u .

In particular,

X,y contains no integer



(1,0) = AX + oy = (xgtuysax, tuy,)
= 7 /7 = ’ 7 7 7
(0,1) = a"x+p’y = % +u'y 0 "%, +u'y,)
for certain integers A ,p ,A’ ,u’ . It follows that
1 = ll (1)| _ l}\l “,l . le X2
0 AW Y1 Y9
whence
X, X
, 1 2' =11
Y192
as claimed.
Proof of the Theorem. Put x = (h,k) , = (h’ , k%) Then

no

Let T denote the closed triangle with vertices

is no integer point in T besides O0,x,y .

a point (h” ,k”) , then there also would be a point with ged(h” , k") = 1.
Then (h” ,k”) = A(h,k) + p(h’ ,k’) with A =20 , 020, 0<A+p=1
and (A,u.) mnot equal to (1,0) or to (0,1) This implies that
kK“ =An+pun<n. We have A >0, pu >0 (since gecd(h,k) = gcd(h’,k’) = 1) ,

h” _ h’ n’ R
whence — < -7 <— . Thus ;7 would belong to % , contradicting

k k Kk’ k n
/7

the supposition that % and 27 are consecutive elements of Fn .

Qs)jazo

For if there were such

The hypotheses of Lemma 2B are now satisfied, and we conclude that

/7

h'k - bk’ = +1 . Since 2 < ue have h’k - nk’ =1
k
h h” h’
COROLIARY 2C. f = , — , — are consecutive elements of &
R SEr =2 R’k k! — — “n»

then

Then there

X,y are not collinear since ged(h,k) = ged(h’,k’) = 1 and X f y -



h” _h+h’

k// k+k/

7

Proof. By the theorem, h”k - hk” =1 and h’k” - Wk’ =1 ,

so that h”(k+k’) - X"(h+h’) =0 .

h /
LEMMA 2D. Suppose that 0 £7 are successive terms in the Farey
series gn ,and put h" =h+h’ , k" =k + k’ . (Note that f; does

7

lt=2

NOT belong to 9n). Then for every @ in

= a = = > at least one
Kk gk scatt: e

of the following three inequalities holds:

h 1 h” 1 h’ 1
(2.1) a-—| < , Je-E] < , |e-X| <
| k \/,ng k V/gk// 2 l k 4 ,\/gk ,2

”

Proof. We may assume that a > ;; . Namely, otherwise replace «

7
by 1 - a’ , % by 1 - E7 , etc. If none of the inequalities above
hold, then
” 4
“'%2 5 . el 1,,2 ’ %'0’2 -
J/5k K Bk 5k’
Adding the first and third inequalities, we obtain
h’ h 1 1 1 1
—_— - ==z ==+
K’ k kk”’ 43'(k2 k,Z) ’
adding the second and third inequalities, we obtain
/7 ”"
LA G S A U U
k' k k'k J5 k2 K2
’ 2 .2 o ,2 "2
Then ,/5kk’ 2 k° + k’° and ./5k’K” 2 k’° + k"° , so that

J5 kI (k+K) = K2+ 2k’2 + k2 | and therefore J5 kI (Qk+k’) =2 2% + 3k’ % + 2Kk

It follows that

02 2((/5- 1)k’ - 2K)°



But this is impossible, since k and k’ are nonzero integers.

LEMMA 2E. Suppose @ is

[

real quadratic irrational which is a

root of a non-zero polynomial

P(X) aX2 + bX + ¢

with rational integer coefficients and discriminant D = b2 - 4ac.

Then for A >,/D , the inequality

(2.2) la - B| < 1
q qu

has only finitely many solutions.

Proof. Write P(X) = aX-a)(X-a’) , so that D = az(a/-ar')2 .

Given p/q with (2.2) we have

%y

1 o-p@y| = P NI S P Jal
5 = IP( )l ]a- Ha(a - )| < 2|a(a -a ta-E) < — + .
o q q q Aq q Aq2 A2q4

which clearly is impossible if A > ./ and if q 1is large.

THEOREM 2F. (Hurwitz (1891)).

(i) For every irrational number « there are infinitely many

distinct rationals E with

1
St

(ii) This would be wrong if /5 were replaced by a constant

A>,\/5.

(2.3) |a - -EI <

Proof. We may suppose that 0 <a <1 . If 7+ and — are

. . . . h h
the successive terms in the Farey series ?n with X & ? , then



