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Preface

Data mining has been an area of considerable research and application in
Australia and the region for many years. This has resulted in the establish-
ment of a strong tradition of academic and industry scholarship, blended with
the pragmatics of practice in the field of data mining and analytics. ID3, Seeb,
RuleQuest.com, MagnumOpus, and WEKA is but a short list of the data min-
ing tools and technologies that have been developed in Australasia. Data mining
conferences held in Australia have attracted considerable international interest
and involvement.

This book brings together a unique collection of chapters that cover the
breadth and depth of data mining today. This volume provides a snapshot of the
current state of the art in data mining, presenting it both in terms of technical
developments and industry applications. Authors include some of Australia’s
leading researchers and practitioners in data mining, together with chapters
from regional and international authors.

The collection of chapters is based on works presented at the Australasian
Data Mining conference series and industry forums. The original papers were
initially reviewed for the workshops, conferences and forums. Presenting authors
were provided with substantial feedback, both through this initial review process
and through editorial feedback from their presentations. A final international
peer review process was conducted to include input from potential users of the
research, and in particular analytics experts from industry, looking at the impact
of reviewed works.

Many people contribute to an effort such as this, starting with the authors!
We thank all authors for their contributions, and particularly for making the
effort to address two rounds of reviewer comments. Our workshop and conference
reviewers provided the first round of helpful feedback for the presentation of
the papers to their respective conferences. The authors from a selection of the
best papers were then invited to update their contributions for inclusion in this
volume. Each submission was then reviewed by at least another two reviewers
from our international panel of experts in data mining.

A considerable amount of effort goes into reviewing papers, and reviewers
perform an essential task. Reviewers receive no remuneration for all their efforts,
but are happy to provide their time and expertise for the benefit of the whole
community. We owe a considerable debt to them all and thank them for their
enthusiasm and critical efforts.

Bringing this collection together has been quite an effort. We also acknowl-
edge the support of our respective institutions and colleagues who have con-
tributed in many different ways. In particular, Graham would like to thank
Togaware (Data Mining and GNU/Linux consultancy) for their ongoing infras-
tructural support over the years, and the Australian Taxation Office for its



VI Preface

support of data mining and related local conferences through the participation
of its staff. Simeon acknowledges the support of the University of Technology,
Sydney. The Australian Research Council’s Research Network on Data Min-
ing and Knowledge Discovery, under the leadership of Professor John Roddick,
Flinders University, has also provided support for the associated conferences, in
particular providing financial support to assist student participation in the con-
ferences. Professor Geoffrey Webb, Monash University, has played a supportive
role in the development of data mining in Australia and the AusDM series of
conferences, and continues to contribute extensively to the conference series.

The book is divided into two parts: (i) state-of-art research and (ii) state-
of-art industry applications. The chapters are further grouped around common
sub-themes. We are sure you will find that the book provides an interesting and
broad update on current research and development in data mining.

November 2005 Graham Williams and Simeon Simoff
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Generality Is Predictive of Prediction Accuracy

Geoffrey I. Webb! and Damien Brain?

! Faculty of Information Technology,
Monash University, Clayton, Vic 3800, Australia
webbQinfotech.monash.edu.au
2 UTelco Systems,
Level 50/120 Collins St Melbourne, Vic 3001, Australia
damien.brain@utelcosystems.com.au

Abstract. During knowledge acquisition it frequently occurs that mul-
tiple alternative potential rules all appear equally credible. This paper
addresses the dearth of formal analysis about how to select between
such alternatives. It presents two hypotheses about the expected impact
of selecting between classification rules of differing levels of generality in
the absence of other evidence about their likely relative performance on
unseen data. We argue that the accuracy on unseen data of the more
general rule will tend to be closer to that of a default rule for the class
than will that of the more specific rule. We also argue that in comparison
to the more general rule, the accuracy of the more specific rule on unseen
cases will tend to be closer to the accuracy obtained on training data.
Experimental evidence is provided in support of these hypotheses. These
hypotheses can be useful for selecting between rules in order to achieve
specific knowledge acquisition objectives.

1 Introduction

In many knowledge acquisition contexts there will be many classification rules
that perform equally well on the training data. For example, as illustrated by
the version space [1], there will often be alternative rules of differing degrees
of generality all of which agree with the training data. However, even when we
move away from a situation in which we are expecting to find rules that are
strictly consistent with the training data, in other words, when we allow rules to
misclassify some training cases, there will often be many rules all of which cover
exactly the same training cases. If we are selecting rules to use for some decision
making task, we must select between such rules with identical performance on the
training data. To do so requires a learning bias [2], a means of selecting between
competing hypotheses that utilizes criteria beyond those strictly encapsulated
in the training data.

All learning algorithms confront this problem. This is starkly illustrated by
the large numbers of rules with very high values for any given interestingness
measure that are typically discovered during association rule discovery. Many
systems that learn rule sets for the purpose of prediction mask this problem
by making arbitrary choices between rules with equivalent performance on the

G.J. Williams and S.J. Simoff (Eds.): Data Mining, LNAI 3755, pp. 1-13, 2006.
© Springer-Verlag Berlin Heidelberg 2006



2 G.I. Webb and D. Brain

training data. This masking of the problem is so successful that many researchers
appear oblivious to the problem. Our previous work has clearly identified that it
is frequently the case that there exist many variants of the rules typically derived
in machine learning, all of which cover exactly the same training data. Indeed,
one of our previous systems, The Knowledge Factory [3,4] provides support for
identification and selection between such rule variants.

This paper examines the implications of selecting between such rules on the
basis of their relative generality. We contend that learning biases based on rel-
ative generality can usefully manipulate the expected performance of classifiers
learned from data. The insight that we provide into this issue may assist knowl-
edge engineers make more appropriate selections between alternative rules when
those alternatives derive equal support from the available training data.

We present specific hypotheses relating to reasonable expectations about
classification error for classification rules. We discuss classification rules of the
form Z — y, which should be interpreted as all cases that satisfy conditions
Z belong to class y. We are interested in learning rules from data. We al-
low that evidence about the likely classification performance of a rule might
come from many sources, including prior knowledge, but, in the machine learn-
ing tradition, are particularly concerned with empirical evidence—evidence
obtained from the performance of the rule on sample (training) data. We con-
sider the learning context in which a rule Z — y is learned from a training set
D'=(zh,91), (x5, y3), ..., (z,,y,) and is to be applied to a set of previously un-
seen data called a test set D=(z1,41), (z2,Y2),- -+, (Tm,Ym). For this enterprise
to be successful, D’ and D should be drawn from the same or from related dis-
tributions. For the purposes of the current paper we assume that D’ and D are
drawn independently at random from the same distribution and acknowledge
that violations of this assumption may affect the effects that we predict.

We utilize the following notation.

Z(I) represents the set of instances in instance set I covered by condition Z.
E(Z — y,I) represents the number of instances in instance set I that Z — y
misclassifies (the absolute error).

€(Z — y,I) represents the proportion of instance set I that Z — y misclas-
sifies (the error) = ELZGI—Z"Q.

W > Z denotes that the condition W is a proper generalization of condition
Z.W > Z if and only if the set of descriptions for which W' is true is a proper
superset of the set of descriptions for which Z is true.

NODE(W — y,Z — y) denotes that there is no other distinguishing ev-
idence between W — y and Z — y. This means that there is no avail-
able evidence, other than the relative generality of W and Z, indicating the
likely direction (negative, zero, or positive) of e(W — y, D) — e(Z — y, D).
In particular, we require that the empirical evidence be identical. In the
current research the learning systems have access only to empirical evidence
and we assume that W (D')=Z(D’) - NODE(W — y,Z — y). Note that
W(D")=Z(D’) does not preclude W and Z from covering different test cases
at classification time and hence having different test set error. We utilize the
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notion of other distinguishing evidence to allow for the real-world knowledge
acquisition context in which evidence other than that contained in the data
may be brought to bear upon the rule selection problem.

We present two hypotheses relating to classification rules W — y and Z — y
learned from real-world data such that W > Z and NODE(W — y,Z — y).

1. Pr(|e(W — y, D) — e(true — y, D)| < |e(Z — y, D) — (true — y,D)|) >
Pr(|e(W — y, D)—¢(true — y, D)| > |e(Z — y, D)—¢(true — y, D)|). That
is, the error of the more general rule, W — y, on unseen data will tend to be
closer to the proportion of cases in the domain that do not belong to class y
than will the error of the more specific rule, Z — y.

2. Pr(le(W - y,D) — e(W -y, D")| > |e(Z—>y,D) —e(Z—-y, D)) >
Pr(le(W — y,D) —e(W — y,D')| < |e(Z = y,D) —€(Z — y,D’")|). That
is, the error of the more specific rule, Z — y, on unseen data will tend to be
closer to the proportion of negative training cases covered by the two rules!
than will the error of the more general rule, W — y.

Another way of stating these two hypotheses is that of two rules with identical
empirical and other support,

1. the more general can be expected to exhibit classification error closer to that
of a default rule, true — y, or, in other words, of assuming all cases belong
to the class, and

2. the more specific can be expected to exhibit classification error closer to that
observed on the training data.

It is important to clarify at the outset that we are not claiming that the more
general rule will invariably have closer generalization error to the default rule
and the more specific rule will invariably have closer generalization error to the
observed error on the training data. Rather, we are claiming that relative gener-
ality provides a source of evidence that, in the absence of alternative evidence,
provides reasonable grounds for believing that each of these effects is more likely
than the contrary.

Observation. With simple assumptions, hypotheses (1) and (2) can be shown
to be trivially true given that D’ and D are idd samples from a single finite
distribution D.

Proof.

1. For any rule X — y and test set D, e(X — y,D) = (X — y, X (D)), as
X — y only covers instances X (D) of D.
_ E(Z—y,Z(DND'))+E(Z—y,Z(D-D"))
e
_ E(Woy,W(DND')+E(W—-y,W(D-D"))
3. E(W — y,D) = Y W (D)] Y
4. Z(D) C W(D) because Z is a specialization of W.

1 Recall that both rules have identical empirical support and hence cover the same
training cases.
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5. Z(DND")=W(DnD') because Z(D') = W(D').

6. Z(D— D) C W(D — D’) because Z(D) C W(D).

7. from 2-6, E(Z — y,Z(D N D")) is a larger proportion of the error of Z — y
than is E(W — y, W(D N D')) of W — y and hence performance on D’ is a
larger component of the performance of Z — y and performance on D — D’
is a larger component of the performance of W — y. 0O

However, in most domains of interest the dimensionality of the instance space will
be very high. In consequence, for realistic training and test sets the proportion
of the training set that appears in the test set, Ll%?li, will be small. Hence this
effect will be negligible, as performance on the training set will be a negligible
portion of total performance. What we are more interested in is off-training-
set error. We contend that the force of these hypotheses will be stronger than
accounted for by the difference made by the overlap between training and test
sets, and hence that they do apply to off-training-set error. We note, however,
that it is trivial to construct no-free-lunch proofs, such as those of Wolpert [5]
and Schaffer [6], that this is not, in general, true. Rather, we contend that the
hypotheses will in general be true for ‘real-world’ learning tasks. We justify
this contention by recourse to the similarity assumption [7], that in the absence
of other information, the greater the similarity between two objects in other
respects, the greater the probability of their both belonging to the same class. We
believe that most machine learning algorithms depend upon this assumption, and
that this assumption is reasonable for real-world knowledge acquisition tasks.
Test set cases covered by a more general but not a more specific rule are likely
to be less similar to training cases covered by both rules than are test set cases
covered by the more specific rule. Hence satisfying the left-hand-side of the more
specific rule provides stronger evidence of likely class membership.

A final point that should be noted is that these hypotheses apply to individual
classification rules — structures that associate an identified region of an instance
space with a single class. However, as will be discussed in more detail below, we
believe that the principle is nonetheless highly relevant to ‘complete classifiers,’
such as decision trees, that assign different regions of the instance space to differ-
ent classes. This is because each individual region within a ‘complete classifier’
(such as a decision tree leaf) satisfies our definition of a classification rule, and
hence the hypotheses can cast light on the likely consequences of relabeling sub-
regions of the instance space within such a classifier (for example, generalizing
one leaf of a decision tree at the expense of another, as proposed elsewhere [8]).

2 Evaluation

To evaluate these hypotheses we sought to generate rules of varying generality
but identical empirical evidence (no other evidence source being considered in
the research), and to test the hypotheses’ predictions with respect to these rules.

We wished to provide some evaluation both of whether the predicted effects
are general (with respect to rules with the relevant properties selected at random)



