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ON THE DEVELOPMENT OF COMPUTER AIDED DESIGN
SOFTWARE FOR MINI AND MICROCOMPUTERS

Richard D. Colbaugh
Department of Mechanical Engineering
New Mexico State University
Las Cruces, NM 88003

ABSTRACT

The use of minicomputers and microcomputers for the im-
lementation of computer aided design (CAD) software packages
Kas increased dramatically in recent years. However, the qual-
ity of such packages is often quite poor. This paper presents a
comprehensive and systematic approach to the writing of high
quality, user-friendly CAD software. The approach is discussed
in some detail, with particular attention being given to I/O, error
diagnostics, documentation, program structure, and portability.
Additionally, the roles of interactive graphics and of the compu-
tational efficiency of the design algorithms are examined. This
approach to the writing of CAD software is illustrated through
its application to the CAD of a class of special purpose pivots
called flexure pivots. The CAD software developed for these flex-
ure pivots has been implemented on both a minicomputer (DEC
VAX 11/780) and a microcomputer (IBM PC), and the results
of these implementations are discussed. Finally, consideration is
given to the teaching of CAD development techniques to engi-
neering undergraduates.

I. INTRODUCTION

Minicomputers and microcomputers are particularly well
suited to the task of hosting computer aided design (CAD) soft-
ware packages. These computers offer many advantages over
mainframes for this application, including the potential for truly
interactive programming and for convenient data input and out-
put (I/ %) Xs a result, the use of mini and microcomputers in the
area of CAD, and in the related areas of computer aided drafting
and computer aided manufacturing, has increased dramatically
in recent years [1,2]. Unfortunately, the quality of these software
packages 1s not umiform, and some programs are actually quite
poor [1,3]. Part of the reason for this problem has been the lack
of availability of a comprehensive and systematic approach to the
development of CAD programs. As a result, the development of
such systems is often a problem-specific process based on a set of
ill-defined heuristics. Another difficulty is the absence of under-
graduate instruction in CAD software development at engineering
schools. The present paper addresses both of these issues. Specif-
ically, this paper presents a systematic approach to the writing
of high quality CAD software, illustrates the effectiveness of this
approach through the examination of a specific CAD application,
and then reports on progress being made in CAD instruction in
the Mechanical Engineering Department of New Mexico State
University.

The present correspondence is organized as follows. First,
the comprehensive approach to developing CAD software is briefly
summarized, with attention being given to I/O, error diagnostics,
documentation, program structure, and portability. Additionally,
the roles of interactive graphics and computational efficiency are
briefly discussed. Next, the approach is illustrated through its
application to the CAD of flexure pivots, which are a class of spe-
cial purpose, limited travel pivots. Flexure pivot theory is briefly
summarized, and then the development and implementation of
flexure pivot CAD software for both a minicomputer (DEC VAX
11/780) and a microcomputer (IBM PC) is described. Finally, the
teaching of CAD development techniques to engineering under-
graduates is discussed, and examples of CAD software developed
by students are presented.
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II. GENERAL CAD SOFTWARE DEVELOPMENT

The development of high quality CAD software is greatly
aided by adherence to a comprehensive, systematic approach to
CAD programming. Such a procedure for software development
has recently been derived by the authors, and shall be briefly sum-
marized here. In what follows, a list of attributes that typify high
quality CAD software is given. The integration of these qualities
into a comprehensive software design procedure is straightforward
and the details will not be given here. A complete description of
this approach is presented in [4].

1. The software should be interactive.

While this quality might seem an obvious one in light of the iter-
ative nature of engineering design, many CAD programs are not
truly interactive. An interactive program must allow the user to
control the program flow, must be consistant in its communica-
tion with the user, and should provide clear, concise prompts to
promote effective interaction.

2. The software should provide graphics capabilities.

The use of computer graphics is increasing rapidly in many areas
of computer application, and the use of graphics in CAD seems
essential. The incorporation of interactive graphics in the CAD
software allows the engineering design process to proceed natu-
rally, and makes more convenient such tasks as date input and
output and user selection of program options.

3. The software should allow clear and efficient input and
output of data.

Important I/O characteristics include graphics capabilities, ade-
quate error checking and diagnostics, provisions for easy editing,
and features such as input data echoing, automatic file saving,
and furnishing all parameter definitions and units.

4. The software should perform complete error checks, and
provide complete error messages.

Specifically, the error messages should indicate the cause of the
error and also provide suitable diagnostic messages so that each
error may be corrected. Observe that good diagnostics is partic-
ularly important in CAD programs because of the ill-structured
nature of many design problems.

5. The analysis performed by the program must be checked
for validity.

It is imperative that the analysis be proven valid for a well defined
range of problems and input data, and that the user be made
aware of these ranges. Additionally, the software must provide
checks that these ranges are not violated.

6. The program should be well documented.

Procedure documentation should be included in the software and
should address both the function of the software and the informa-
tion flow of the program. Both user documentation (prompts, on-
screen instructions, HELP functions) and programmer documen-
tation (detailed software documentation to aid future up-dating
of the program) should be included.



7. The software should be portable.

The software should be executable on a variety of systems with a
minimum of conversion required. Software portability is increased
by using code that is in common use, utilizing a modular program
structure (with machine dependent functions such as data I/O
and graphics separate from the main program structure), and
incluili-ng adequate documentation.

8. The software should be based on numerical algorithms
that are robust and computationally efficient.

The desirability of algorithm robustness is clear, but the need
for computational efficiency warrants one observation. While ef-
ficiency is desirable in any program, it is crucial in an interactive
design program since there is a definite limit on the time inter-
val that the user can be expected to sit in front of an inactive
screen. Thus, if the program is to be truly interactive, the al-
gorithms upon which it is based must be sufficiently fast so that
user interaction is comfortable.

9. The software should be well structured.

Clear program structure is essential if the design program is to be
easily maintained and modified. The overall program structure
should be developed using a “top-down” process involving the
expansion of program modules into progressively more detailed
submodules [5]. The program shoulcF be modular and possess a
clear separation of program functions and a well defined program
hierarchy. Additionally, the program should have good structure
within each procedure. Program flow should be made as sequen-

1[‘.iz]11 as possible and “back tracking” should be kept to a minimum
6].

10. The program should include a tutorial option and de-
fault values for program variables to assist the user.

While the benefits of including “example problems” to acquaint
the user with the program’s operation are clear, it should be noted
that these default values could be updated (either by the user
or automatically by the software) as the CAD program solves
desigu problems, thereby providing the software with a (primitive)
learning capability.

11. The software should be flexible regarding the user’s level
of participation.

The software should allow the user to request only a portion of
the design program’s functions (depending on his needs) and to
request a range of program instruction levels (depending on his
expertise).

As mentioned earlier, the attributes of high quality CAD
software listed above can be readily integrated into a compre-
hensive and systematic procedure for developing CAD software.
While this process is straightforward, the details are somewhat
involved and therefore will not be given here [4]. Instead, an ex-
ample of the application of the procedure to a particular CAD
problem will be presented.

ITI. APPLICATION TO FLEXURE PIVOT DESIGN

The procedure for developing high quality CAD software
that was summarized in the preceding section will be illustrated
by applying it to the development of design software for the
crossed flexure pivot. Crossed flexure pivots of the type shown in
Fig. 1 are used extensively in instrumentation applications and in
the construction of aeronautical research equipment [7-9]. They
are also employed, to a lesser degree, in gYroscopes, governors,
regulators, valves, and various limited-deflection linkages [10-12].

The function of a crossed flexure pivot is to permit relative
angular rotation between two rigid structural elements. This rel-
ative rotation is accomplished through the elastic deformation of
the flexure strips that connect the two elements. Flexure pivots
enjoy many advantages over conventional pivots, including essen-
tially frictionless travel, excellent properties regarding wear, dirt,
and vacuum, and good response to impulsive loads. However,
the elastic deformation of the flexure pivot is described by a set
of nonlinear second-order differential equations, so that designing
an appropriate pivot for a particular application is a formidable
task. It is for this reason that the CAD software development
method summarized above was applied to flexure pivot design. If

an effective CAD program could be written that would allow the
mechanical designer to efficiently %:merate flexure pivot designs,
then the numerous advantages of these pivots could be realized.

Fig. 1

As indicated in the Introduction section, CAD programs for
the crossed flexure pivot have been developed by the authors and
implemented on both a mini-computer (DEC VAX 11/780) and
a microcomputer (IBM PC). While the problem statement for
each of these programs is very similar and the overall program
structures are alike, there are sufficient differences between the
two CAD programs to make separate presentations desirable.

1. Minicomputer Design Program

Th(; problem statement for the minicomputer CAD program is to
d?slgn a flexure pivot by determining the values of the following
pivot design parameters:

1. flexure strip length, £ (in)

2 flexure strip width, b (in)

3. flexure strip thickness, ¢ (in)

4 angle of flexure strip intersection, 23 (degrees)
5.  flexure strip material

so that this pivot design will meet user specifications for the fol-
lowing pivot performance criteria:

1. pivot rotational stiffness, k¥ (in-1b/rad)

2 pivot natural frequency, w (rad/s)

3. precision of pivot rotation, IC (in)

4. maximum permissible pivot stress, omaz (psi)
5. minimum acceptable pivot stability, %Py(%)

The numerical algorithms used in the minicomputer CAD
program were extremely efficient and quite robust. Computa-
tional efficiency presented a major difficulty, and was finally
achievedby recasting the flexure pivot differential equation model
as a set of elliptic integral equations and by deriving original re-
search results to model the pivot’s vibrational dynamics 7]. The
overall design algorithm was based on multivariable interpolation
theory and was written to considerably reduced the number of
times that the various numerical algorithms needed to be exe-
cuted [7]. Discussion of this theory is beyond the scope of this
paper.

The overall structure of the minicomputer CAD program is
probably best described by examining the program flow. The pro-
gram flow is initiated by prompting the user to enter the following
mputs:

1. Ranges of acceptable values for the design parameters
£,b,t, B plus a list of acceptable materials.



2. Desired values for the pivot performance criteria plus
acceptable tolerances on these values.

The following notes regarding this input of data are given:

1.  All data is entered in response to graphical prompts.

2.  All data input is checked for error and then echoed to-
gether with the appropriate units. Additionally, provi-
sions are made so that the input can be readily edited.

3.  Default values for all data are available to illustrate
program operation to the novice user.

Following this data input, the extreme values of the pivot
design parameters are combined appropriately and then used to
determine if a physically realizable pivot exists that possesses the
specified performance criteria. If such a pivot exists, these results
are used to initiate the multivariable interpolation that will yield
the desired pivot design. If no such pivot exists, this information is
returned to the user together with suggested modifications of the
input design parameters that should result in a successful design.
Observe that for a novice user it is not uncommon to attempt
several iterations of this nature. This fact illustrates the impor-
tance of both interactive software and helpful error diagnostics in
CAD programs.

Once the flexure pivot design is completed, the design is
tested (numerically) to be certain that it will meet the specified
performance criteria, and that its response is within the range
for which the numerical algorithms are valid. Finally, this pivot
design is returned to the user.

The minicomputer CAD program briefly described above
was implemented on a DEC VAX 11/780 with excellent results.
The program proved to be user friendly and robust. Addition-
ally, most pivot designs were returned in a few seconds, so that
computational speed appeared quite acceptable.

2. Microcomputer Design Program

The microcomputer CAD program is very similar to the
minicomputer program just described; however, a few important
differences need to be mentioned. Most of these differences were
a result of the need to improve the computational efficiency of
the program so that execution time would be acceptable on the
slower microcomputer.

1. The program selects values for the pivot design parameters
£,b,t, and B but does not choose a material. This modifi-
cation results in a significant computational savings, and it
was felt that an appropriate material could be selected by
the user by using the program iteratively.

2. The option of specifying a desired rotational precision was
replaced with the option of maximizing rotational precision.
While optimization of a given criterion is typically more
expensive computationally, in the present case this change
results in increased efficiency (7].

3.  The option of including tolerances on the performance cri-
teria was removed.

4. Some of the more elaborate help functions were eliminated.

5. The range of flexure pivot angular deflections over which the
numerical algorithms are valid was reduced to +£30° . It was
felt that this range was sufficient for the majority of appli-
cations, and this modification allowed some of the system
equations to be partially linearized, resulting in increased
computational efficiency.

The resulting CAD program was implemented on an IBM
PC and tested extensively on a wide range of pivot design prob-
lems with excellent results. The program proved to be remarkably
robust and accurate, as well as user friendly and flexible. Program
execution time was generally acceptable, ranging from a few sec-
onds to approximately 30 seconds. Improved performance was
obtained by adding a mathematics coprocessor to the standard
PC hardware and running a compiled version of the program.
These modifications yielded very acceptable efficiency, with exe-
cution time generally less than 10 seconds.

IV. INSTRUCTION OF CAD SOFTWARE
DEVELOPMENT TECHNIQUES

The proliferation of CAD program packages in recent years
is making the instruction of CAD software development tech-
niques to engineering undergraduates increasingly important.
While this importance is clear for students who will one day be
writing their own CAD software, it is noted that it is also impor-
tant for the users of commericially available CAD packages, since
knowledgeable students will be better prepared to effectively eval-
uate and use such packages.

At New Mexico State University, one of the authors (RDC)
has introduced CAD software development as a topic in the Me-
chanical Engineering Department’s junior course Mechanical De-
sign I. The instruction consists of a series of lectures followed by
the assignment of a CAD software development project. The stu-
dents are encouraged to work in groups, and are provided with
a list of CAD problems drawn from local industry to aid their
selection of a project. Student response to this topic has been
outstanding, and the quality of work performed by the students
is excellent. As an example of the level of student performance, a
page from a CAD program User Manual is shown in Fig. 2. This
particular CAD program was developed for flexure pivot design
and was implemented on an Apple Macintosh Plus computer.

The CAD Desktop

Whenever you open a CAD document or create a new
document, CAD creates a new window on the desktop. You
can see the following of a typical CAD desktop:

@ File Edi  Window Opfimize Ubrary

in]
Deslred K l I
Applied Moment [ ]
Strip thickness

+

> .

Strip width
+

Modulus, € [
Stipangle [ ]
Massdenstty ]

l/

The menubar at the top of the screen contains the pull-down
menus of the CAD comands. You can choose a comand by
dragging through the menu and releasing the mouse button
when the desired comand is highlighted.

Fig. 2
V. CONCLUDING REMARKS

This paper has presented a summary of a comprehensive,
systematic_approach to the development of high quality CAD
software. Particular attention was given to I/(%, error diagnos-
tics, documentation, program structure, portability, graphics, and
computational efficiency. The approach was illustrated through
its application to the CAD of flexure pivots, and CAD software
for both mini and microcomputers was discussed. Finally, some
results of an effort to teach CAD software development to engi-
neering undergraduates were given.
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ABSTRACT

In the late 1970's all electronic computer aided design and
simulation was performed on mainframe computers. Since that time,
more and more of the mainframe capability has progressed down to
the minicomputer and more recently to the desktop or personal
computer level. Within the past two years, software has become
available for the personal computer to allow the electronic designer
to implement a circuit in silicon within hours of the concept.

This paper evaluates the Data I/O - FutureNet approach to the
personal computer silicon foundry and compares it to other
approaches on the market. The paper will clarify the many
different programmable logic devices (PLDS) such as PALs, PLAs
PROMs, and IFLs and the appropriate application for each type of
PLD.

The Data I/O - FutureNet System is one of the most complete
systems available to the design engineer today. This paper addresses
tI{e hardware configuration and the level of support software (e.g.,
schematic capture and simulation) and the problems associated with
interfacing to the programmable logic software and to the type of
integrated circuit chosen for the design. Using a simple traffic light
controller circuit as an example, the truth table approach is
compared to the schematic capture input in arriving at a working
silicon integrated circuit. Finally, the paper will address the
problems of data file formatting and testing the PLD once it has
been fabricated.

INTRODUCTION

Once available only on large mainframes and minicomputers,
computer aided design (CAD) software has now been written for
personal computers. One of the most unique electrical engineering
applications for the personal computer, because of its completeness,
is in semicustom logic design. The entire development process from
design and fabrication to testing can be performed with a personal
computer, CAD software and a peripheral device programmer. The
Data I/O - FutureNet system is one such approach to the personal
computer silicon foundry. Using semicustom integrated circuits and
recently available software, an electronic designer, at his own desk,
can design, simulate, implement and test a finished integrated circuit

[1].
PROGRAMMABLE LOGIC DEVICES

Programmable logic devices (PLDs) are one member of a family
of integrated circuits (ICs) known as semi-custom devices, that
provide an alternative to the use of discrete lo?ic gates to implement
digital logic design. The PLDs are purchased from the manufacturer
in an unprogrammed state; all the gates within the ICs are connected
with microscopic fuses prior to programming. CAD software tools
perform the function of arranging the pattern of logic gates on the
device so that the circuit will perform a specific log{c_funcgnon
required by the designer. PLDs, in turn, can be subdivided into
Programmable Array Logic (PAL), Programmable Logic Array
(PLA), Field Programmable Logic Arrays (FPLA), Programmable
Read Only Memory (PROM), Integrated Fuse Logic (IFL) and
Generic Array Logic (GAL) among others.

PLDs take advantage of the fact that any Boolean logic equation
can be written in a sum-of-products format [2]. These devices
consist of an array of AND logic gates connected to an array of OR
logic gates. The specific logic function of the PLD is dictated by
which logic gates in each array are connected following the
programming process.

The PAL is composed of a programmable AND array and a
fixed (or permanently connected) OR array. A PAL can replace
many discrete logic gates, reduce part count and printed circuit
board space and provide security for proprietary designs. Develop-
ment time for a discrete TTL IC based design could be five to ten
times as long as one using PLDs [1].
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The PLA and the FPLA have a structure where both the AND
and OR logic arrays are programmable. This creates a more
versatile device and can contain larger, more complex circuits than a
PAL [1]. These devices are also know as IFLs. Other IFLs include
Field Programmable Logic Sequencers (FPLS) which contain flip
flops with clocked outputs and feedback to implement Mealy State
Machines or sequential logic [2].

Most PLDs can be programmed only one time; however, GALs
(developed by Lattice Semiconductor) are CMOS PAL replacements
that are electrically erasable and reprogrammable. GALS consume
low power and can be easily reprogrammed to accommodate design
revisions at the engineer's desk.

PROMs are constructed out of a fixed AND array and a
programmable OR array. This arrangement creates a look-up table
especially suited for memory applications.

MARKET OVERVIEW

A number of companies provide CAD software tools for use
with the personal computer. Most of this software is written for the
IBM PC, XT, AT and compatibles although there are also CAD tools
for the Apple line as well. Many software companies specialize in
one area of CAD software such as schematic capture.

Available schematic capture software includes FutureNet
(DASH4), OrCAD Systems Corp. (OrCAD), Omation (Schema II),
Visionics (EE Designer), Personal CAD Systems (P-CAD) and Case’s
CT series. Simulation software include FutureNet (CADAT), E/Z
CAD Inc. (Plogic), Personal CAD Systems (P-CAD), Aldec Inc.
(Susie) Simucad (SILOS), and CASE (Scald), as well as others [3].

PLD development software is supplied by Advanced Micro
Devices (PL PL), Assisted Technology Inc. (CULP), Data 1/0
(ABEL), Monolithic Memories Inc. (PALASM) and Signetics
(AMAZE) among others [4). PALASMI was the first PLD software
released and has been succeeded by PALASM2 for the development
of PALs. AMAZE was created to aid in the development of IFLs.
The higher level software tools evolved from these such as ABEL
and CUPL. These software packages will run on a large variety of
different PLDs from several manufacturers.

Device programmers are either controlled by software on a
personal computer such as PROMLINK (Data 1/O) or are a stand
alone unit such as Vatrix and Altec products. The

software approach is more versatile and more easily modified [5).

. The electronics industry is moving in the direction of providing
integrated software products for all phases of the design process.
Most of the products listed provide some means of transferring data
files. Schematic capture from one company can sometimes be passed
on to a simulator of another. For example, PALASM data files can
be run on an ABEL system.

THE DATA 1/0 - FUTURENET
PERSONAL SILICON FOUNDRY

The Data I/O - FutureNet System is one of the most complete
PLD develo‘pment systems available to the design engineer. It is
composed of a personal computer and device programmer combined
with a complete set of software modules to perform the design,
simulation, programmmf and testing of PLDs. The software set
consists of DASH4-STRIDES for hierarchical schematic capture and
DASH-CADAT a logic simulating [6]. DASH-ABEL is a software
package that interfaces the schematic capture to the Boolean logic
translator, known as ABEL. The ABEL translation language is the
focal point of the PLD generation process. It is the software that
provides the conversion of Boolean logic equations into fuse map
data files that contain the necessary information in a standard
format for the device programmer [8]. ABEL accepts input in the
form of truth tables, state diagrams, logic equations or DASH-ABEL
converted schematic diagrams. ABEE provides logic reduction,

simulation and documentation of the design. PROMLINK is a



software package that interfaces the personal computer to the device
programmer. It controls the programming functions and inputs the
fuse map file to the programmer. Programming the PLD completes
the manufacturing process and creates a working integrated circuit.
The last software module is PLDTEST which is a fault analysis tool.
It can create a complete set of test vectors for up to 100 percent
testing of the programmed PLD.

CASE STUDY

An example circuit was selected to exercise the development
system. The circuit was neatly and easily converted to a PLA
implementation in the text "Introduction to VLSI Systems" by Carver
Mead and Lynn Conway [9]. This circuit is a simple traffic light
controller at the corner of a busy highway and quiet farm road.
The logic is selected to maintain the greatest flow of traffic on the
highway at the same time accommodating the occasional automobile
on the farm road.

The circuit was entered into the CAD system in two ways. The
first method was the most direct in that a truth table was generated
to describe the possible logic states and then entered directly into
ABEL via a text editor. This was by far the more efficient
approach. The second method involved working backwards to create
a schematic diagram from the truth table and it was entered into the
DASH4 schematic editor. The circuit was simulated with
DASH-CADAT and translated into ABEL with the DASH-ABEL
software module. For ease of conversion from one software module
to another the logic gates were written using LSTTL logic -- a
technology accepted by all of the software modules. The schematic
approach might be favored if a schematic already existed for a
discrete logic implementation. However, the complexity of the
circuit would be significantly ?reater if implemented using standard
LSTTL logic gates because of the limited numbers of inputs for
available AND and OR gates.

Once in ABEL, both approaches were reduced logically and fuse
map files generated. The PROMLINK software package controlled
the device programmer and the actual integrated circuits were
programmed. The common PAL PI6R4 was used. Finally, the PALs
were tested using PLDtest and the percentage of the chip tested was
determined. The truth table approach achieved 100 percent
coverage while the schematic approach had 90.4 percent coverage.

DISCUSSION AND CONCLUSIONS

This personal CAD system is composed of an integrated set of
six different software modules. Data files describing a logic circuit
are passed from one module to another. The files must be of a
common format such as all LSTTL logic. A circuit described in
gene;ic logic symbols typically cannot be passed from one module to
another.

The choice of the particular PLD is a trial and error approach
[1]. The ABEL package will indicate if a logic circuit will not fit in
a particular PLD but will not help select the ideal PLD for a
particular application. A good survey of available programmable
logic parts is found in Reference [10]. One weakness in the system
design is that ABEL’s internal simulator provides only pass or fail
information. Also, it is not possible to transfer an ABEL file to the
full featured DASH-CADAT logic simulator.

Six different software modules with volumes of documentation
need to be covered to fully utilize the system. The system’s software
modules are menu driven for the most part, however ABEL and
CADAT require input in the form of user written programs. These
programs are C language derivatives, each with their own syntax.
The component libraries supplied with the system are large and
contain most standard parts in a large number of technologies (TTL,
NMOS, CMOS and ECL among others). For a custom part, a
graphical and functional model can be created but the creation of
custom components in the DASH editor can be a difficult and
tedious process.

The personal silicon foundry resident on a desktop computer is
a powerful and capable design tool for creating and testing relatively
small logic circuits. Its greatest asset is its availability to the user
and its low cost compared to larger, faster and more expensive
workstations.
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ABSTRACT: It was only ten years ago that the design of
comlex integrated circuits required hardware and soft-
ware that represented between one half and one million
dollars in value. Today this task is completely execut-
able on equipment and software the value of which is less
than an economy automobile.

INTRODUCTION: Perhaps nowhere in technology does the
relationship between two scientific disciplines better
demonstrate cynergism. The symbionic relationship
between the digital computer industry and the semicon-
ductor industry is a case study as to how each can
leverage the growth of the other. The one fact that
cannot be disputed is the availability of low cost, high
complexity digital logic integrated circuits such as
microprocessors, controllers, memories and interface
drivers, and this has been a major force in the meteoric
advancement of digital computers. The other side of this
cynergistic relationship is the fact that design and
simulation of these complex integrated circuits is
impossible without high performance, economical and
available computing equipment. One could construct a
valid analogy with the ''chicken and egg'' paradox. Which
came first, the high performance, low cost single chip
microprocessor or the computationally powerful low cost
digital computer and simulation software? Neither
technology could exist without the other, and indeed
their very existence is a result of mutual and inter-
locked evolution. The remainder of this paper will
relate the importance, if not the necessity, of the N
personal computer for the design of integrated circuits.
It would be the author's hope that the reader keep in
mind as a reference point the importance, and indeed the
necessity, of complex integrated circuits to the very
existence of personal computers.

DISCUSSION: The design of digital integrated circuits
is comprised of three distinct engineering disciplines.
To practiced engineers in the field they are known as,
1) circuit design, 2) logic design and 3) topology or
mask design.

Now we will examine the ''state of the art" in these
design activities, both before and after the personal
computer era.

1) Circuit Design - This activity is best described
as the interconnection of various semiconductor compo-
nents to perform useful functions in the time and
frequency domain. The input to the computer is a network
list describing how the components are interconnected,
along with mathematical descriptions as to how each
responds in time and frequency (models). The object of
circuit simulators is to predict with high accuracy the
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performance of circuits containing two to several hundred
semiconductor components. The simulator is computation-
ally extensive, but not generally a "memory hog'. As a
result this activity found its way early on to the PC
base. Today several software companies offer circuit
simulators for PCs in the few hundred dollar cost range
which are every bit as accurate and useful as their main-
frame counter parts.

2) Logic Design - In digital or logic circuits, the
time domain variables consisting of volts and current,
can be viewed as Boolean variables consisting of 1 and 0.
More importantly, the circuits which accept imputs and
produce outputs can be viewed as primitive logical
operators (or gates) such as 'and", "or'" and "inverse'
(or "not"). It should be clear to the reader that this
transformation from circuits with volt and current
variables to logic gates with 1 and 0 Boolean variables
is a tremendous simplification of the problem -albeit at
the expense of accuracy. As the ability to make more and
more semiconductor circuit elements on a single chip of
silicon grew (currently at over 100,000 transistors per
chip), the need for a "logic simulator' became obvious.
The first logic simulators became commercially available
in the mid 1970's, ran on mainframe computers and cost
abcut $50,000. Today several companies offer PC versions
for a few hundred dollars.

3) Topology or Mask Design - All of us have looked
at microphotographs of integrated circuit chips or the
chips themselves and marvelled at the complexity and
small size. A semiconductor process uses from 6 to over
20 mask layers to produce these chips. The graphics
design of these masks (topological design) involves
tremendously large graphic data bases and the manipula-
tion of them by the designer demands extensive computa-
tion. For this reason the design of IC topology was
restricted to mainframes and dedicated work stations as
late the mid 1980's. However now, as a result of
improved graphics in the PC world, at least seven
software companies offer complete IC topology design
packages on a PC. The mainframe equivalents of these
programs range from $25,000 to $250,000, while the PC
versions are less than $5,000.

CONCLUSION: The migration of integrated circuit design
tools from mainframe computers to PCs, and the resulting
cost reductions, has led to a new business form. 'Design
Boutiques' which consist of a handful of skilled
designers with inexpensive PC design tools are springing
up throughout the industry. The value which they bring
to the product is their skills at innovation and product
design which is conveyed through the PC and design
software.
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1. Introduction.

Variable Structure Systems (VSS), due to their
inherent advantages, are recently investigated by many
researchers (5.1, [8.1, [10.1, [13.1. Variable struc-
ture control is a control scheme in which the feedback
gains are discontinuous in time. In such systems, the
overall system dynamics is altered by high speed dis-
continuous switching - similar to the bang-bang time -
optimal control. The states of the system tend to a
special hypersurface called “switching hypersurface”
or “sliding surface”. When the sliding surface is
reached, the control is changed and the states remain
on sliding surface indefinitely (system is in sliding
mode ).

The following two requirements must be fulfilled
in the design of variable structure control:

1. selection of appropriate hypersurface such that
the system trajectories will have desirable
behavior when confined to the hypersurface,

2. design of appropriate feedback gains, which will
guarantee that the system will be attracted to
the hypersurface and remain on it.

Theoretically, VSS control possesses excellent
robustness properties in the case of uncertain para-
meters and unknown nonlinearity of the system. VSS
applications, however, are limited by chattering of
control (high control activity). Some smoothing tech-
niques have to be applied to reduce this disadvantage
[3.]1. The chattering character of control is not so
critical when VSS concept is applied to the design of
robust observer for uncertain or nonlinear systems
[2.1.

Three CAD packages have been written for inter-
active design of VSS control systems and robust VSS
observers for uncertain systems: the first one in
FORTRAN 77, whereas the second and the third - in
UNIX-C programming environment.

2. Variable Structure Control Systems.

2.1. Theoretical background.

Usually, the variable structure control systems
assume that a plant is described by a linear

X(t) = A-x(t) + B-u(t) (1.)
where : x(t) e R" , u(t) e RM s
Ae R™M B¢ XM
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or a nonlinear model

R(t) = f(x,t) + B(x,t)-u(t) (2.)
where : x ¢ R" , UE R" »
f(x,t): RL x R > R" , and

B(x,t): R x R" » R™"

It is assumed that B(x,t) and f(x,t) are continuous
and that f(x,t) is sufficiently smooth (assuring
uniqueness of solution of (1.){.

The structure of control in VSS systems is changed
upon reaching a switching hyper-surface G(x) = 0 on
the state space. The switching hypersurface is gene-
rally an n-m submanifold of RM which assures required
behavior of system when confined to this hypersurface.

The switching hypersurface can be denoted by
6(x) =00 ,(x), ..., 0,001 =0 (3.)

where m is the dimension of control vector u(t).
The control has the form

o:(x) <0 (4.)

+
uj (x) s i

u; (x) 3

i O'i(x) >0

where uy is the i-th component of u and (Ti(x) is the

i-th of the m switching hyperplanes which satisfy

O(x) =0; O(x) e R™. The above system with discon-
tinuous control is called a variable-structure system
(VSS) since the effect of the switching hyperplanes is
to alter the feedback structure of the system. A
fundamental aspect of VSS is the sliding motion of the
state point on intersection of the switching hyper-
planes. It occurs if, at a point on a switching
surface(fi(x) = 0, the directions of motion along the

state trajectories on either side of the surface are
not away from the switching surface. The state then
slides and remains for some finite time on the
switching surface(}i(x) = 0.



The condition of s1iding motion on its hyperplane
may be stated in numerous ways.

Tim (ii(x) <0 (5.)
(Ti(x) > o
and
im0 () >0 (6.)
(Tl(x) > 0

or equivalently

oT(x) - Ox) <0 (7.)
in the neighbourhood of O&(x) = 0.

((TT(X) . CT.(x) is strictly negative).

When in the sliding mode, the VSS satisfies the
equations (’i(x) = 0 and (yi(x) = 0 and possesses

several important advantages, including behavior like
an n-m order dynamic system, high speed, insensitivity
to variations in plant parameters and external dis-
turbances, and simplicity of physical realization.

2.2. Design of switching hypersurface.

The design of switching hypersurface should be
done regarding the dynamics of the system when it is
constrained to the hypersurface. The reason for that
is that the system, while confined to the switching
surface, behaves like an n-m order dynamic system.
The reduction of system order gives the designer the
possibility to consider a reduced order linear system
instead of a nonlinear one. The design of the
switching hypersurface is generally based on the
appropriate selection of eigenvalues of the
reduced-order system [10.1.

2.3. Control design.

The feedback control should guarantee reachabi-
lity and existence of a sliding mode. A piecewise
continuous control u(t) is a feedback type of control
and is also a function of sign(fi(x); i=1, ..., m.

In general, u(t) is described by equation (4.).

From the appropriate theorems [4.]1, [10.] it is
known that the control which guarantees

CTT(x) « O(x) is strictly negative, providing the
existence of a sliding mode, and it is reachable on
O(x) = 0 for the entire state space. The main
objective of the control design is to choose u(t) such

that (’T(x) . (i(x) is less than zero. The control
is frequently selected in the form [11.]:

n
u(t) = _Zl c; - xi(t) (8.)
]:
where
¢ = 1 a;  for g(x) +x;<0 (9.)
b; for @ (x) - x; >0

2.4. Variable Structure Observers.

Variable structure observers are a topic of
intensive research interest. The influence of
chattering - the main disadvantage of VSS - is not
so dramatic in VSS observer schemes. At the same time,
there are maintained the advantages of VSS systems,
like robustness to parameter uncertainties and reduced

order of the system when sliding on switching hyper-
surface. Below given is an introduction to VSS obser-
ver design.

Let us consider an observable system in the form

X

Ax + Bu x(0) = Xg (10.)

"

Cx (11.)
1

y

where x e R" , UE Rm, yeR and A e RXM .

Ce R]Xn are known constant matrices. It is also
assumed that rank C = 1. After decomposition of the
state vector and transformation [1.1]

T=| "1 (12.)

where C = (Cl, C2) and C2 € R1 are nonsingular matrices,
we obtain state equation in the form

o
|

= AjpP + Appy + Bu (13.)

y = Ayip + Ayyy + Byu (14.)

The VS observer is a system defined by:

P = AP+ ALY+ Byu + LK sgn(x) (15.)

y = AZIE + Azzy +Byu+ K sgn(x) (16.)

where L ¢ RO™1) ang k ¢ RTXT .

Considering the fact, that only a part of state
variables is directly available (i.e. y = Cx), the
sliding plane can be defined as [10.1:

a](x) = .Yi = ‘yl' = .Vi (17.)
Matrix L should be chosen to guarantee stability
of the observer in sliding mode and to specify the
transient character of the observation error, i.e. to
specify eigenvalue placement in the system

(18.)
P=AP+ALY-LKsgny 5 p=p-5p

; = Ayyp + Ay - Ksgny (19.)
There are many possibilities of the choice of
matrix K according to various adaptation mechanisms.
In order to reduce chattering about the switching
plane in sliding mode, the components of matrix K
should not take big values, but they must be suffi-
ciently large to guarantee reachability and to make
the reaching phase fast. To satisfy the contradictory
conditions, we have chosen matrix K in the form

K(y) = Ky diag (lyl) + Ky (20.)

where Kl’ K2 are constant matrices of dimension
1 x11([8.1.

For the system which has some eigenvalues greater
than zero, there are certain regions in the state
space from which the sliding plane cannot be reached
[12.1. Since the switching plane is not freely



variable [5.1 [6.]1, it is possible to solve this
problem by adopting a “combined observer”, i.e. a VS
observer which has also components as a reduced obser-
ver

(21.)
1

)

= 5 7 6
A11 p+ A12 y + Blu + LK sgnO + Mv

where M is an (n-1) x 1 gain matrix and term v ¢ R

is defined as v = § - y. In order to avoid diffe-
rentiation of system output y, let us define
q=p-My (22.)

Then the observer system takes form

g-= (Ayq - MAZI) g+ (ApgM = MA M + A, - MA,) y

+ (B1 - MBZ) u + (L-M) K sgn& (23.)
y=Aya+ (A22 + Ay M)y + Byu + K sgn© (24.)
To describe error dynamics, let us define q = p - My,
Hence, from (17.), (23.) and (24.), error g =q - q
satisfies
q = (A11 - MA21) q+ (AllM - MA21 M+ A12 - MAZZ) y

+ (M-L)Ksgny (25.)
y=Aya+ (A22 + Ay M)y -Ksgny (26.)

When the system with nonswitchable gain only (M) can
be stabilized by choice of matrix M (all eigenvalues
less or equal zero), then the switching plane is
reachable [12.]1. It should be noted that in some
cases the trajectory tends to the sliding surface
asymptotically.

3. VSS CAD package.

A VSS CAD package has been designed based on the
procedures outlined in previous sections. The package
is a part of a larger expert system for modeling,
simulation and control of uncertain linear and non-
linear dynamic systems. The software has been written
in C, FORTRAN 77 and PASCAL for IBM-PC, PDP-11/40 and
IBM 3801. .

The VSS CAD package, primarily written in FORTRAN
77 for PDP-11/40, allows to interactively design:

- variable structure controllers for linear uncertain
systems,

- VS controllers for uncertain nonlinear single-input
systems,

- VS controllers for uncertain multi-input systems,

- VS observers for uncertain linear and nonlinear
systems.

The updated version (written in C) of the package is
enhanced by the possibility of the use of extended
Kalman filter as an estimator of internal states.
Another main feature offered by the updated version
of the CAD package is the possibility of the design
of model reference adaptive control systems (MRAC)
using the concept of variable structure control [9.1.

The packages are fully interactive including
graphical display of results. All data are stored in
external files, and the graphical part of the software
can be easily modified depending on hardware require-
ments.

10

The possibility of interactive design and simula-
tion of uncertain nonstationary systems for determinis-
tic and nondeterministic cases is also offered.

The interactivity of the package and a broad ran-
ge of input devices facilitate analysis of VSS control
systems. Plant parameters as well as work conditions
can be easily changed during simulation. Filtering of
discontinuous control sequences, and the hysteresis
region to realistically model the switcher in VSS
are also provided. In the case when the plant disturb-
ance statistics are not known, the package allows to
apply adaptive Kalman filters or VS observers.

4. Conclusions.

Design techniques for VS control systems and VS
observers have been briefly outlined. A VSS CAD
package based on the design procedures discussed in
the paper has been shortly described. The package
allows to interactively design robust VS control
systems and VS observers for uncertain plants.

The CAD package has been intensively tested and
applied to industrial robot control and electrical dc
drive control.

Further work concentrates on extension of the
package in the area of nonlinear uncertain system
design using global linearization.
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ABSTRACT

Experimental data and literature information were
assimilated into a mathematical description of
recombinant yeast: cell growth, plasmid segregation, and
heterologous protein production. Simulation results were
verified with batch, fed batch, and hollow fiber
bioreactor fermentations.

INTRODUCTION

Despite its long history, growth models for yeast
remain incomplete. Past efforts have generally focused
on specific aspects of the cell biology: cell cycle and
distributions of cell states (Hjortso and Bailey 1984a,
1984b), long term respiration adaptation (Barford 1981),
growth lags (Pamment et al. 1978), or the asymmetric
dynamic response to step up changes in substrate feed
(Lievense 1984). It was the intent of this ,work to
summarize current information on the behavior of yeast
into a mathematical model, to wutilize the knowledge
gained by past efforts, and to extend this model to
recombinant production cultures.

A mathematical description representative of the
biochemistry and physiology of the yeast Saccharomyces
cerevisiae was formulated for growth, protein production,
and plasmid segregation. The model assimilated both
qualitative and quantitative literature information of
the cell’s metabolism. Data obtained earlier (Coppella

1987) were used to evaluate model parameters and to
verify model predictions.

FUNDAMENTALS
Model fundamentals were four fold.
Menten Kinetics described enzyme kinetics:

[1] Michaelis-

v = VxS ()
K+ S

[2] Target values (steady state values) represented the
value of a variable at balanced growth (where the cell
could be), and were a function of the environment and the
physiological state of the cell as proposed by Lievense
(1984). For reaction velocity v, (V) was the target
value, the velocity at balanced growth. [3] Growth lags
resulted from the slow response of the macromolecules to
synthesize the proteins required to catalyze the
utilization of the changing substrate resulting in cell
growth. This slow response was a consequence of the
transcription and translation processes as shown below:

DNA - RNA
PROTEINS
SUBSTRATES - GROWTH

The rate of change in a species was dependent upon the
time constant which was a function of the cell state, and
the distance from the target value. [4] Three
catabolisms were considered: glucose fermentation,
glucose oxidation, and ethanol oxidation.
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Mathematical descriptions of cell growth quickly
become complicated because of the strong
interrelationships between cellular and environmental
components as shown below:

substrates -+ growth rate
N 'd t N\
mRNA -+ enzymes « RNA
AN 'e
RNA synthesis
proteins

Cell growth rate depends on the level of total RNA,
enzymes, and the substrate concentrations. In turn the
enzyme levels depend upon total specific cellular RNA
(including rRNA for protein synthesis) and the level of
mRNA from which the protein is translated. mRNA
concentration is determined by the substrate levels that
regulate transcription, growth rate, and RNA synthesis
proteins that depend on total RNA.

The model started from material balances on cell
mass, heterologous protein, substrates, and intracellular
enzymes. Rate equations for catabolism were required
first. Catabolic pathways were simplified and equations
for substrate utilization were developed. Expressions
for the steady state and dynamic behavior of the specific
growth rate and enzyme synthesis were then required. The
description of the dynamic behavior of these components
started with an expression for RNA, then utilized the

interrelationships discussed above to extend the results
to the other intracellular species. Production of
heterologous proteins were then described. Finally a
model was formulated for plasmid segregation to complete
the description of recombinant yeast.

DEVELOPMENT

Details on the simplification of catabolic enzyme
pools and development of equations presented here are
given elsewhere (Coppella 1987). Mass balance equations

for both fed batch and hollow fiber bioreactor
configurations are summarized in Table 1. The major
catabolic pathways in yeast (glucose fermentation,

glucose oxidation, and ethanol oxidation) were researched
and simplified to develop the rate expressions needed for
the mass balances. Simplification was pgoverned by the
known biochemistry to achieve the correct functionality
of pathway behavior. The enzymes involved in these
processes were grouped into four enzyme pools: E

(glycolysis), Ej(alcohol dehydrogenase I), E;y (alcoho

dehydrogenase 1II), and E (TCA). %Le enzyme
concentrations were specific to the dry cell weight and
normalized by the level at full induction or at full
derepression in order to simplify the boundary conditions
and to evaluate catabolic rate constants. Mass balances
on the catabolic enzymes, stoichiometric equations, gas
exchange rates, and rate equations are also summarized in
Table 1.



Dynamic lags in cell growth from a step up in
substrate concentration, result from delays in the
synthesis of required enzymes. This lag results from the
dynamic behavior of the synthesis of any enzyme (Eg)
which was mathematically described in two steps. First
target values (steady state values) of all enzyme
synthesis rates (vg) and the total specific RNA level
(Ny) were related to the steady state specific growth
rate (y)T. With these relationships, the model for the
dynamic behavior of specific RNA level of Lievense (1984)
was used to develop the expressions for VE and u.

PROTEIN PRODUCTION

Production of hEGF from the a-factor prepro region
was assumed to be a combination of growth associated and
nongrowth associated kinetics (Pirt 1985). The initial
medium induction 1lag was described by a saturation
kinetic expression with the independent variable chosen
to be the number of generations after inoculation (&).
These equations are summarized in Table 1. n, equaled
the number of generations required for % induction of the
a-factor promoter and Xp was the recombinant dry cell wt.

PLASMID SEGREGATION

P was the probability of a plasmid free progeny
resulting from the division of a recombinant cell. Equal
growth kinetics for host and recombinant cells were
assumed as found earlier (Coppella 1987). Mass balances
on recombinant and host cells for both fed batch and
hollow fiber fermentations are presented in Table 1 as
well as results of the probability analysis of plasmid
partitioning at cell deviation. 2z was a correction for
deviation of plasmid partitioning from random
distribution, i.e. z = 1 for random distribution and z <
1 for inhibited plasmid transport to the daughter cell.

Distribution of plasmid copy numbers resulting from
unequal partitioning of plasmids during cell division was
not considered and is discussed elsewhere (Coppella
1987).

PARAMETER ESTIMATION

Table 2 summarized the parameter values used for
simulation. The fed batch model consisted of 37
equations (13 differential equations) and 45 parameters
of which 19 were estimated form the literature, 18
calculated from the experimental results presented
earlier (Coppella 1987), and 8 adjusted to fit the
experimental data due to the lack of available
information on the enzyme pools. All the adjusted
parameters were fit to the dry cell wt., hEGF, dissolved
oxygen, and fraction of recombinant cells data from the
batch fermentation. These values were then used to
simulate the remaining batch data and the results from
the fed batch and hollow fiber fermentations. Of the 8
adjusted parameters, 5 described the yeast catabolism, 1
protein production, 1 dissolved oxygen, and 1 plasmid
segregation. Further discussion of parameter estimation
is presented elsewhere (Coppella 1987).

MODEL SIMULATIONS

The model was solved with "DELSIM", a simulation
program developed by David E. Lamb at the University of
Delaware (Newark, DE). Initial and minimum step size was
0.0001 hour, maximum step size 0.05 hour, and the maximum
allowed integration error was 0.5%.

Figure 1 presents the  batch fermentation
experimental and simulated results. Excellent agreement
between model predictions and experimental data was
achieved for the dry cell wt., glucose, ethanol, and hEGF
throughout both growth phases (glucose fermentation and
ethanol oxidation) and both lags (diauxic lag and
stationary phase). Ethanol utilization was the most
difficult to simulate because it resulted from two
independently and actively changing enzyme pool
concentrations. Similar results were obtained for
additional variables (fraction of recombinant cells,
dissolved oxygen, carbon dioxide production rate, oxygen
uptake rate, and respiratory quotient) for batch
experiments (see Coppella 1987).
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Verification of simulation of these and additional
variables for batch, fed batch, and hollow fiber
bioreactor fermentations yielded similar results and was
presented elsewhere (Coppella 1987). Also presented were
hEGF optimization simulations and results of the model
parameter sensitivity study.

CONCLUSIONS

A model was formulated for the growth kinetics,
plasmid segregation, and heterologous protein production
in S. cerev.. Of the 48 parameters required by the model

only 8 were adjusted, others were regressed from
experimental data or estimated from literature
information. The model successfully described the
measured dry cell wt., OUR, CPR, RQ, glucose, ethanol,

dissolved oxygen, fraction of recombinant cells, and hEGF
production behavior for batch, fed batch, and hollow
fiber bioreactor fermentations. Simulations were then
used to predict optimized hEGF production in a fed batch
fermentation with constant specific growth rate. All of
the cell growth parameters and initial conditions were
important as seen from the sensitivity of model
predictions to their value. This demonstrated that the
model was well distributed and that all aspects of the
catabolism described were significant and require future
experimentation to elucidate behavior.

It was hoped that this model would be a useful tool
in the future to design experiments to further elucidate
cellular phenomenon and to control, design, and optimize
industrial yeast processes.

The simplifications made by the model in the
catabolic pathways represent a first order approximation.
This was required because of the lack of data concerning
the behavior of these enzyme pools. It is hoped that
this model developed will be used as a tool in the design
of experiments to elucidate the needed information.
Future models should focus on the junction of the three

major pathways: glycolysis, TCA cycle, and ADH-I and
ADH-11. The intermediates (pyruvate, acetaldehyde,
acetate, and acetyl-CoA) should first be screened to

identify the critical constituents. A mass balance on
the critical intermediates would allow for separate rate
equations to be written for the major pathways. The
resulting model should be an improved representation of
the actual kinetics. However without the supporting
experimentation, such a model would be very presumptuous
and of limited value. In addition, information on the
synthesis, degradation, and control of the major enzyme
pools is also recommended.
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NOTATION
( )p target value of variable, value at balanced growth
L variable value at t = 0, initial condition

a mass transfer area for hollow fiber bioreactor; cm?

ADH  alcohol dehydrogenase

a; stoichiometric coefficient; g glucose/g decw

a, stoichiometric coefficient; g ethanol/g dcw

ag stoichiometric coefficient; g glucose/g dcw

a, stoichiometric coefficient; g 0,/g dcw

ag stoichiometric coefficient; g ethanol/g dcw

ag stoichiometric coefficient; g 0,/g dew

b2 constant; g dcw

e plasmid copy number; plasmids/cell

C* O2 concentration in liquid medium; mmol/1

c 0, saturation concentration in liquid medium;

. mmol/1

Cyo 02 saturation concentration in liquid medium at
start of fermentation; mmol/1

CPR  carbon dioxide production rate; mmol/l/hr



