Seenesnsmps ot

o S

s

W
m
i
W

ol

e,

e

o

naenmironn

GO A s

o

NG

AN,

4

-

Introduction to DECSYSTEM-20"
Assembly Programming

Stephen A. Longo
La Salle College

Brooks/Cole Publishing Company
Monterey, California

To Rachael and Stevie for their excitement
To Janice for her strength
To all three for their love

Brooks/Cole Publishing Company
A Division of Wadsworth, Inc.

© 1984 by Wadsworth, Inc., Belmont, California 94002. All rights reserved.

No part of this book may be reproduced, stored in a retrieval system, or transcribed, in any
form or by any means—electronic, mechanical, photocopying, recording, or otherwise—
without the prior written permission of the publisher, Brooks/Cole Publishing Company,
Monterey, California 93940, a division of Wadsworth, Inc.

Printed in the United States of America
10987654321

Library of Congress Cataloging in Publication Data

Longo, Stephen A., [Date]
Introduction to DECSYSTEM-20™ assembly.

Includes index. :
. 1. DECSYSTEM-20 (Computer)—Programming.
2. Assembly language (Computer program language)
I. Title.
QA76.8.D17L66 1984 001.64'2 83-7414
ISBN 0-534-02942-6

Sponsoring Editor: Michael Needham

Production Editor: Richard Mason

Manuscript Editor: Adrienne Cordova

Interior and Cover Design: Katherine Minerva
Illustrations: John Foster

Typesetting: Graphic Typesetting Service, Los Angeles

DEC is the trademark of Digital Equipment Corporation.

Introduction to DECSYSTEM-20™
Assembly Programming

PREFACE

Today, with all of the advances in computer hardware and software,
learning assembly language remains a challenging endeavor. Assembly is
a highly complex language requiring more active programming skills than
do, say, high-level languages. Only after an assembly course does a stu-
dent start fully to appreciate high-level languages (and also to note some
of the shortcomings of high-level languages). Even more important, a
course in assembly gives students a better understanding of what takes
place inside a computer.

There are many differences between a high-level language and an
assembly language. Each statement in a high-level language represents
a sequence of computer instructions that a person can read. In addition,
the programmer here need not be concerned with some of the specific,
highly detailed aspects of the computer hardware. In assembly language,
however, the programmer must be aware of these complex details, which
in turn allows the programmer more control of the computer. Assembly
programming also demands that each operation be thought of as a simple,
isolated step rather than as part of a sequence of steps.

I feel that a student’s first course in assembly should not be comparative
but that it should deal instead only with a specific assembly. The choice
of which particular assembly language to use will depend on what hard-
ware is available to the student. At La Salle College we have a number
of different computers, but I feel it is best to teach the students DECSYs-
TEM-20 assembly because it is a very complete assembly; it contains many
features that are not present in other assemblers. Because of the richness
of the DECSYSTEM-20 assembly, students subsequently have very few
problems in future courses that deal with microprocessor assembly (Z80,
6800, ete.).

The real challenge in most problems assigned to computer students lies
not in the nature of the answer but in how to achieve that answer. In
other words, challenge lies in designing a method, an algorithm, that will
produce an expected result. The computer’s fast turn-around time and
helpful messages assist students in this endeavor. Students can learn from
their mistakes and are motivated to correct them. Because of these
encouragements I strongly believe in hands-on experience. Therefore, I
have arranged topics and programs in such a way that a student will be
able to use the computer as soon as possible. This may make the initial
chapter a little oversimplified, but it does afford the student the oppor-
tunity to start programming after only a few lectures.

Rather than starting off with a discussion of machine code, this text
deals first with single-character operations. There are two reasons for
this arrangement: first, I feel that the single character (byte) and its
encoding (ASCII) is the fundamental entity of assembly, and that therefore
this should be dealt with as soon as possible; second, computers do not
work in decimal—therefore students must learn a new radix. By post-
poning a study of machine code, students can first learn enough about
assembly so that they can write simple assembly programs (homework
assignments) that convert numbers from one radix to another. These pro-
grams will help students later on when they study machine code; it will
also help them with exercises that require them to code radix conversions
by hand.

This text has two parts. The first seven chapters introduce the student
to some basic concepts in assembly: terminal input/output; jumps; addressing
modes; numbers, radices, and bits; logical operators and shifts; transfer-
ring data using pointers. I have purposely delayed discussing those facil-
ities that would switch the burden of programming from the student to
the computer (e.g., MACROs) so as to ensure that the student first under-
stands fundamentals. I have also demonstrated how many of the sophis-
ticated JSYS (e.g., input/output) can be simulated by more primitive calls.
By the end of Chapter 7, students should have a good command of basic
assembly concepts, many of which will be transportable to other assem-
blers, especially microcomputer assemblers.

The last four chapters deal with concepts with which the student is
supposed to be familiar—stacks and subroutines (Chapter 8), files (Chap-
ter 10), and interrupts (Chapter 11)—with Chapter 9 given over to MACROs.
The emphasis in these chapters is not on teaching these concepts but
rather on showing how they are to be implemented in assembly. For instance,
in the chapter dealing with files I supply some MACROs, but students will

vi

PREFACE

also be expected to write their own for two reasons: first, students can
always use good, practical exercises dealing with MACROs; second, writing
all the basic steps necessary for file operations helps the student to under-
stand files better.

This is a learning text rather than a reference book. But, so as to help
the reader seeking to use this as a reference book, I have included a
number of appendices to allow for easy access to definitions.

There were many individuals who helped me with this text. I would
like to acknowledge Hal Dell as well as the many students who used the
preliminary version of the book, with special thanks to Rick Smith. I
would like to thank the people who reviewed the manuscript: Carl Fussell
of the University of Santa Clara, Ralph E. Gorin of Stanford University,
and Charles M. Shub. Of course, those who have suffered through writing
a text know the contribution a wife makes—thank you Janice!

Stephen A. Longo

PREFACE vii

N

CONTENTS

CHAPTER 1 Introduction to Assembly 1

1.1 Assembly versus High-Level Languages 1
1.2 Constructing Statements 4

1.3 Simple Assembly Programs 6

1.4 Summary 8

CHAPTER 2 Terminal Input/Output 9

2.1 Building Blocks for Input/Output 9

2.2 Monitor Calls 10

2.3 Three Plus Seven Does Not Equal Ten 13
2.4 Messages 16

2.5 Summary 18

2.6 Exercises 18

CHAPTER 3 Jumps 19

3.1 A Jump Scorecard 19

3.2 Where to Go and How to Get There 20
3.3 Loops 22

3.4 A Program Using Jumps 23

3.5 Summary 26

3.6 Exercises 26

CHAPTER 4 Addressing Modes 27

4.1 Immediate Addressing 27
4.2 Index Addressing 28

ix

4.3 Indirect Addressing 29

4.4 Calculating Effective Addresses 30
4.5 Opcode Function Suffixes 33

4.6 Summary 34

4.7 Exercises 34

CHAPTER 5 Numbers, Radices, and Bits 36

5.1 Machine Code 36

5.2 Radix N 37

5.3 Assembly Language and Machine Code 42
5.4 Macro 45

5.5 Negative Numbers 47

5.6 Summary 51

5.7 Exercises 51

CHAPTER 6 Logical Operators and Shifts 53

6.1 Logical Operations 53

6.2 Arithmetic and Logic 57

6.3 asciI Bit Packing and Unpacking 62
6.4 Data Base Bit Packing and Testing 65
6.5 Summary 70

6.6 Exercises 70

CHAPTER 7 Transferring Data Using Pointers 72

7.1 Byte Pointers 172

7.2 Literals 77 _

7.3 Reading from the Terminal 78

7.4 Comparing Strings—I 80

7.5 Half-Word Opcodes and Monitor Control Bits 83
7.6 Comparing Strings—II 86

7.7 Summary 90

7.8 Exercises 90

CHAPTER 8 Stacks and Subroutines 91

8.1 Stacks on the DECSYSTEM-20 91
8.2 Subroutines 95

x CONTENTS

8.3 External Subroutines 104
8.4 Coroutines 108

8.5 Summary 112

8.6 Exercises 113

CHAPTER 9 Macros 114

9.1 Defining a Macro 115

9.2 Created Symbols and Default Values 119

9.3 Parameter Passing and Special Pseudo-Ops 121
9.4 Universals—External Macros 126

9.5 Summary 127

9.6 Exercises 127

CHAPTER 10 Files 129

10.1 Files in Assembly 130
10.2 Macros and Byte Files 134
10.3 Summary 139

10.4 Exercises 139

CHAPTER 11 Interrupts 141

11.1 An Analogy 141

11.2 Setting Up Interrupts 143
11.3 Interrupts and Macros 147
11.4 Summary 154

11.5 Exercises 154

APPENDIX A ascu Codes for vo 155
APPENDIX B DECSYSTEM-20 Opcodes 159
APPENDIX C Debugging a Program 171
APPENDIX D Fortran and Macro 178
APPENDIX E Pascal and Macro 182
APPENDIX F Real Numbers 186

Index 195

CONTENTS «xi

e

CHAPTER

1

Introduction to Assembly

This chapter provides a bird’s-eye view of assembly language as prepa-
ration for the chapters that follow. The discussion assumes that you are
familiar with a high-level language like BASIC or FORTRAN and introduces
you to the similarities and differences between these languages and assembly
language. The analogous elements of the two types of languages offer
helpful starting points; you will also find, however, that assembly lan-
guage is more complex, requiring more active programming skills than
do high-level languages. By the end of this chapter, the bare outlines of
assembly programming will have begun to emerge.

1.1 Assembly versus High-Level Languages

The computer’s three main parts are the control, input/output @0), and
the memory. The memory stores information as an ordered set of loca-
tions. It is analogous to rows of boxes in which each box has an address
(the boxes are numbered), and in which you can place numbers and retrieve
them as you need them (Figure 1-1).

content l 23 | ‘ 8 |
address 15 16 17
Figure 1-1 Memory Locations (Addresses) and Memory Contents

Let us look at how a translator (compiler, interpreter) of a high-level
language uses memory. Consider the statement I = 3, which assigns a
value of 3 to the variable I. The computer must pick a memory location
(a box), place the 3 in the location, and remember that the name of the
location is now I. To help it find the box I more easily, the computer
constructs a table (symbol table) in which it writes the symbol I accom-
panied by the box number. The next time the computer needs the infor-
mation represented by I, it goes to the symbol table, finds the I, reads
the memory location (the box number), goes to that location, and looks in
that box.

I=3 I 54 3

statement symbol table address 54

To avoid multiple definitions (assigning the same name to more than one
box), the translator checks the symbol table every time it encounters a
variable. If the symbol is not in the table, the translator adds it. If the
symbol is already there, the translator uses the previously defined location.

In general, one line in a high-level language causes the computer to do
more than one operation. The simple statement I = 3 does two things,
for example. It assigns a name, I, to a location, and it places a value, 3,
in that location. In assembly language, however, each line of code causes
one operation only and does not contain any hidden cues to perform other
operations. Thus, a statement in high-level language is essentially made
up of a number of assembly language statements.

‘Let us now consider the statement J = I + K, which assigns to the
variable J the value of the sum of the variables I and K. Where does the
computer perform addition? How do the memory locations interact with
each other? To answer such questions, we need to look further at how the
memory works. A computer has many memory locations (thousands, mil-
lions). For every memory location to be able to communicate directly with
every other location, the memory works something like a telephone sys-
tem. Clearly, it is not practical to have a separate telephone wire from
your house to every location you call; instead one wire goes from your
house to a switching station, which acts as a central connecting point.
When you want to talk to a friend, the switching station connects your

2

CHAPTER ONE

line to your friend’s line; it essentially takes your information and routes
it to your friend (Figure 1-2). This preferred connection (switching sta-
tion) eliminates many costly, cumbersome interconnections though it has
its own cost: busy signals when connections are unavailable. Similarly,
computers do not tie memory locations directly to each other but to pre-
ferred locations called accumulators. In general, then, the memory loca-
tions just hold information (numbers) and interact only through accumu-
lators. The accumulators, on the other hand, can interact with any part
of the computer, can hold information, and can operate on (change) infor-
mation. Computers differ in the number of accumulators they have and in
the operations that the accumulators can perform. The DECSYSTEM-20 has
16 accumulators.

phone phone phone phone

phone phone phone phone

Figure 1-2 Telephone Interconnection Models

With this new information on accumulators, we can again look at the
statement J = I + K. This statement requires the operation of addition.
Since the accumulator is an integral part of such operations, we must first
copy (MOVE) the contents of memory location I to an accumulator. Next,
we add the contents of memory location K to the accumulator. Finally, we
must copy (MOVEM) the contents of the accumulator to the memory loca-
tion J.

INTRODUCTION TO ASSEMBLY 3

J=1+K

5=3+2
Accumulator Memory/Content
MOVE 173
3 <4 ——
ADD K/2
5 e
MOVEM
5 e J/5

Thus, the simple statement I = J + K in a high-level language in effect
represents several lines of assembly code, with each line of code repre-
senting one step for the computer. Because assembly language works with
the fundamental locations of information (memory and accumulators), users
are responsible for more bookkeeping than they would be in a high-level

language.

1.2 Constructing Statements

Statements in high-level languages generally take the following form:
label variable assignment expression

For example,

300 I = J+K

On the other hand, a statement line in assembly can have this form:
label opcode operand, operand

The label, if used, is the first thing on the line in both high-level and
assembly languages. Labels are very important because they allow for
the nonsequential flow of a program. (The program need not progress
according to the physical progression of lines; a program can loop back or

4

CHAPTER ONE

forward as necessary, using the labels as reference points.) In high-level
languages like BASIC that require line numbering, the line numbers are
the labels. Those languages that don’t require line numbering may restrict
the form of the label (for example, by specifying numbers only) or possibly
specify the position (for example, by limiting the label to certain columns).

Assembly language uses labels and generally allows almost any char-
acter and any number of characters in forming a label. DECSYSTEM-20
labels have very few restrictions, other than that they must end with a
colon (2).

The expression part of a high-level language statement can contain
more than one computer operation (I * J + K), whereas assembly lan-
guage allows only one operation per statement. The opcode symbol in the
assembly statement represents the operation. Examples of opcodes are
MOVE and ADD. The variables in the operation are the operands. Assem-
bly languages differ in the number of operands they allow per line. Most
computers with more than one accumulator use two operands per line.
Some microcomputers use only one operand, and some stack-oriented
systems have no operands. Since operations generally require accumu-
lators, one operand must be an accumulator. Thus, a DECSYSTEM-20 assembly
statement line has the following form:

label: opcode ac, operand

The comma after the accumulator is important. Just as the colon identifies
the preceding symbol as a label, the comma identifies the preceding sym-
bol as an accumulator. (Note: Some DECSYSTEM-20 assembly opcodes do
not appear to reference an accumulator—for example, SET to Zero a mem-
ory location, or SETZ memory). The DECSYSTEM-20’s 16 accumulators are
numbered starting with zero (0). If an assembly statement does not ref-
erence an accumulator—that is, it has no comma—then the translator
assumes accumulator 0. Because accumulator 0 requires different treat-
ment from other accumulators, beginning assembly programmers should
generally avoid using it.

The DECSYSTEM-20 also uses spaces and/or tabs as delimiters (charac-
ters that separate symbols within the line). The space or tab separates
the opcode and the accumulator. The DECSYSTEM-20 also allows on-line
comments (they are generally necessary). A semicolon signifies that a
comment follows. A complete DECSYSTEM-20 statement is composed of
five fields: label, opcode, accumulator, operand, and comment. A state-
ment, then, will take the form:

label: opcode ac, operand ;comment

INTRODUCTION TO ASSEMBLY 5

A computer scans (reads) a line character by character, starting at the
beginning of the line and constructing the fields. The delimiters inform
the computer when to start and/or stop a field. The computer ignores
leading spaces and tabs and reads the first nonspace or nontab as the first
symbol. The trailing delimiter identifies the field represented by the sym-
bol. When the computer reads a colon, it identifies the previous symbol
as a label and begins to construct the next symbol when it reads the next
nonspace or nontab. This form of scanning allows the label field to have
more than one label because the label field does not end until the computer
reads a symbol not delimited by a colon. For example:

labell: label2: opcode . . .

Once the label field closes—that is, the system constructs another symbol
that ends with a space or tab—a new symbol will most probably be an
opcode. Once the opcode field closes, the system starts the next field, and
so on. The computer continues to ignore leading spaces and tabs and does
not start the next symbol until it finds a nonspace or nontab. If a symbol
ends with a comma, then it is an accumulator; if it ends with a space or
tab, then the field is an operand. In most cases, if the system reads a
semicolon or a carriage return, it stops scanning the line.

1.3 Simple Assembly Programs

The computer (interpreter/compiler) reads programs written in a high-
level language and converts them into a specific language (machine code).
The computer then uses the machine language to execute the program.
Statements can generate executable and nonexecutable code.

A data line is an example of a high-level statement that does not gen-
erate executable code. A data line requests that values be placed in loca-
tions for use at run (execution) time. Another example is a dimension
statement, which warns the computer to set aside contiguous memory.
In high-level languages, nonexecutable statements generally have a spe-
cific position in the beginning of a program,; if these statements appear in
the body of the program, a computer error can result.

Assembly language also has executable and nonexecutable statements,
which must be separated to avoid errors. As in high-level languages,
assembly comments, though nonexecutable, can appear anywhere in your
program. The simple label statement I: 3 is an example of a nonexecutable
statement in assembly language. This statement identifies a location, this
particular line, as I, which in this location is a 3. The computer does not

6

CHAPTER ONE

treat the 3 as an opcode in this situation: if only one field ekists and it
could be an opcode, an ac, or an operand, then the computen'd;i?eats’fﬂ'le
field as an operand. In other words, if an opcode has nothing to sperate
on, then it ceases to be an opcode and defaults to an operand.

All symbols, like opcodes, operands and labels, must be represemted-in
the computer memory as unique numbers. This conversion is the respon-
sibility of the assembly program, also referred to as the assembler. (The
assembler is comparable to the compiler or interpreter that scans state-
ments in high-level languages.) The assembler first scans an assembly
program and generates machine code. If the scanned line has an opcode,
the code generated is executable and is placed in (sequential) memory
location. If the scanned line has no opcode the code generated becomes
nonexecutable. The (relative) address of the memory location presently
being filled is kept in a register called the location counter. As each word
is placed in memory the location counter is incremented. When a label is
used, like I: 3, the symbol, I, is assigned the present value of the location
counter and is placed in the symbol table.

1003 R
1004 I3 I 1004
1005

location counter program symbol table

Location 1004 here now contains a 3. When the I appears in a nonlabel
field the translator will search the symbol table and replace the I with its
original location counter value.

A coded program by itself, essentially a dump of memory, shows no
distinction between data and instructions and gives no indication where
the program starts or stops. The assembly programmer (you) must inform
the computer where the program ends and where the executable part
begins by labeling the first executable statement and placing the word
END after the last line of the program. The symbol on the line with the
word END labels the first executable line. Nonexecutable lines can appear
after the executable lines as long as the computer can avoid these lines
during execution. High-level languages use a STOP or GOTO END for this
purpose; in assembly, EXIT serves the same purpose (we will discuss a
better choice later). An assembly program then has this structure:

INTRODUCTION TO ASSEMBLY 7

