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ABSTRACT

A comprehensive computer code has been developed for the
assessment of the economics of various types of combination dry-wet
cooling towers for electric power plants. The model considers the
basic thermodynamics of wet (evaporative) and dry (conductive) heat
transfer, steam turbines, and condensers and the influence of dif-
ferent power loading patterns and changing meteorological con-
ditions, as well as the various economic parameters. In the latter
category are the capital costs associated with the equipment as
well as the lost capacity at extreme meteorological conditionms,
and the operating costs resulting from fuel consumption, cooling
water usage, maintenance of the cooling systems, internal power
requirements, and under-production of energy. These factors are
all described and discussed in some detail.

The computer models have been used to study the thermodynamic
and economic performance of several parallel air path and series
air path dry-wet cooling tower configurations. In addition to
demonstrating the general usefulness of the models, the results
have enabled the identification of several promising configurations
which seem attréctive in their economic, water conservation and fog
abatement aspects. In particular, it is found that parallel air

path towers are more flexible and effective than comparable series
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air path configurations. Of the different type of parallel air
path towers, the most favorable one is also the simplest, namely
the one in which separate dry and wet units of conventional design
are utilized simultaneously. Finally, it is evident that combi-
nation dry-wet cooling towers are economical in comparison with

conventional wet towers when the cost of water is sufficiently

high.
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