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Preface

Recent technology involves large-scale physical/engineering
systems consisting of hundreds or thousands of interconnected
elementary units. Such large-scale systems cannot be expected to
function correctly as a whole unless they are well structured in some
appropriate sense. Thus, it is natural that there is an increasing
demand for systematic procedures for structural analyses of large-
scale systems.

It has now been widely recognized that combinatorial mathematics,
especially those theories which are accompanied by efficient
algorithms, can provide some useful tools for the structural analyses
of large-scale systems. In this book, two problems in structural
analyses, namely, the structural solvability of a system of
linear/nonlinear equations and the structural controllability of a
linear time-invariant dynamical system, are treated by means of
combinatorial concepts such as graphs and matroids. Special emphasis
is laid on the importance of relevant physical observations to
successful mathematical modelings.

Related works, theoretical and practical, abound in the litera-
ture of various fields; no attempt is made to cover them all. The
forthcoming book [Recski 86] by Professor A. Recski seems to have much
to do with the present work, sharing the same methodology as ours
while focusing on the problems on electrical networks and structural
rigidity.

This monograph is primarily based on the author's dissertation
[Murota 83c] at the University of Tokyo. It is, however, completely
rewritten on this occasion to include the succeeding works done by the

author at the University of Tsukuba.

It is a pleasure to express a deep sense of gratitude to those
who helped me in writing this book. I owe much to Professor Masao Iri
of the University of Tokyo, who introduced me to this field five years
ago, gave me a never-failing guidance through penetrating and substan-
tial suggestions, and encouraged me to write this book. My cordial
thanks are due to Professor Bernhard Korte of the University of Bonn,
who invited me to write a book in ALGORITHMS AND COMBINATORICS.
Acknowledgement is given to Junkichi Tsunekawa of the Institute of

Japanese Union of Scientists and Engineers, who kindly provided
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relevant materials on JUSE-GIFS and DPS, to Sueo Abe of Nissan
Chemical Industries, Ltd., who made suggestive comments, and to Masaki
Ichikawa of the Environment Agency, who, in his graduation thesis,
implemented the algorithm for computing the rank of a mixed matrix and
prepared the data used in examples. The handy word-processing tool
designed excellently by Professor Yoshitsugu Yamamoto of the
University of Tsukuba has facilitated preparing ‘the manuscript.
Discussions with Professor Satoru Fujishige and Dr. Masaaki Sugihara
of the University of Tsukuba have always been helpful and enjoyable.
Professor Hiroshi Imai of Kyushu University kindly suggested many
improvements in the early draft. Thanks are also due to my
colleagues, Dr. Ryo Fuji-Hara, Professor Takeshi Koshizuka and his
students of the University of Tsukuba, and Dr. Seiichi Shin of the
University of Tokyo. Finally, I am grateful to the staff of Springer-
Verlag for their cooperation in all aspects of the production of this
book.

I would like to dedicate this book to the late Mr. Hideo Tanaka,
who was full of warmth and truth.

Kazuo Murota
Tsukuba

Summer 1986
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Introduction

Graph theory, as a branch of combinatorial mathematics, has
achieved remarkable development in the past several decades, leading
to fruitful generalizations and extensions such as network theory and
matroid theory, and yielding quite a few mathematical results which
are interesting and beautiful in themselves.

Recently, however, it has become widely recongnized that some of
the concepts and results in combinatorics serve also as useful
mathematical tools for the analysis of engineering systems. In fact,
various kinds of graphical representations of systems are now in
common use in various fields of engineering; for example, circuit
diagrams of electrical networks, flow-charts of computer programs,
block diagrams and signal-flow graphs of control systems, process
flowsheets of chemical plants, and transportation networks, etc. With
these representations, a variety of so-called graphical techniques is
employed for the analysis of systems.

One of the most naive graphical techniques would be to draw the
graphs, i.e., the figures consisting of circles and arrows, which
represent some aspects of systems. Such an approach méy certainly be
helpful for visualization and hence for analysis by inspection, at
least for moderately-sized systems. Modern industries, however, are
based on large-scale systems, for which the structural analysis is
vital and for which analysis by inspection fails. In order that any
graphical technique be of practical use for the analysis of large-
scale discrete systems, the graphical representation of systems must
be such that it admits systematic analysis based on the mathematical
results obtained in graph theory; therefore, graphs must be treated as
combinatorial objects, primarily consisting of the incidence relations
between vertices and arcs.

For a successful analysis of any kind, it is of ultimate
importance to set up a mathematical model of a real-world system so
that the relevant aspects of the real situations are represented with
sufficient faith, and at the same time, that mathematical rigor and
simplicity are incorporated to render it amenable to subsequent
mathematical treatments.

The first, and probably the most crucial, step in mathematical
modeling would be to select the relevant set of quantities
characterizing the problem and to find the description of the system

suitable for mathematical analysis. When the structural aspects of a
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discrete system are in question, a description in terms of a collection
of elementary variables is often more appropriate than a sophisticated
compact one. In describing a linear time-invariant dynamical system,
for example, the so-called descriptor form of state-space equations is
more suitable in this respect than the standard form (see §12 for more
arguments).

The second is to grasp the nature of the quantities, which is to
be reflected in the mathematical structure of the model. For example,
even the primitive classification of the quantities into zeros and
nonzeros, which usually leads to graph-theoretic models, often yields
meaningful results in the analysis of large-scale discrete systems.

Another important aspects, especially from the practical point of
view, is that the methods of analysis are to be backed up by efficient
algorithms which can be performed on computers. In this regard, the
theory of computational complexity [Aho-Hopcroft-Ullman 74], [Garey-
Johnson 79] may be useful. But further elaboration on algorithms
should be made to enhance the efficiency for individual problems.

The present monograph is devoted to the study of the structural
analysis of a system of linear/nonlinear equations and the structural
controllability of a linear time-invariant dynamical system. The
outline of the contents of this book is as follows.

Chapter 1: Mathematical preliminaries are given along with
conventions. A list of symbols is shown in §1. Algebraic concepts
concerning algebraic independence and ranks of matrices are introduced
in 82. Relevant results in graph theory and matroid theory such as
the Dulmage-Mendelsohn decomposition of bipartite graphs and the
principal partition of submodular functions, are mentioned in §3 and
§4, respectively, with some emphasis on the algorithmic aspects.

Chapter 2: A graph-theoretic method is developed for the
structural analysis of a system of equations. 1In §5, the structural
solvability of a system of equations is formulated in algebraic terms.
Under a certain "generality assumption" on the functions in the
system, a necessary and sufficient condition for the structural
solvability is given in §7 in terms of Menger-type linkings on the
representation graph introduced in §6. Then in §8 are defined the
L-decomposition and the M-decomposition of graphs, which are applied
in 89 to the hierarchical decomposition of a system of equations into
smaller subsystems. Various graphical techniques are integrated into
a systematic procedure for solving a system of equations in §10,

followed by examples in §11.
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Chapter 3: Graph-theoretic conditions are given to the
structural controllability of a linear dynamical system expressed in
the descriptor form: F dx/dt = Ax + Bu, where the nonvanishing entries
of the coefficient matrices F, A and B are taken for independent
parameters. In 8§12 various descriptions of a dynamical system and the
associated natural graph representations are discussed from the
viewpoint of structural analysis. Some known results on the control-
lability condition of a descriptor system are described in §13. Then
in 8§14, the structural controllability of a descriptor system is
equivalently expressed in terms of the Dulmage-Mendelsohn decomposi-
tion of the associated bipartite graph, and some of the known results
on structural controllability are derived therefrom as corollaries.

Discussions in 815 conclude this chapter.

Chapter 4: Physical observations are made for providing the
physical basis for the more elaborate and faithful mathematical models
adopted in subsequent chapters. First in §16 it is observed that two
different kinds are to be distinguished among the nonvanishing numbers
characterizing real-world systems, and the notion of "mixed matrix" is
introduced as a mathematical tool for incorporating this intuitive
physical observation in the structural analysis. Next observation,
made in 817, may be categorized as a kind of dimensional analysis,
pointing out some algebraic implications of the principle of
dimensional homogeneity. A novel concept of "physical matrix" is then
introduced in 818 as a mathematical model of the matrices encountered
in real problems, reflecting the dual viewpoint from structural
analysis and dimensional analysis developed in the preceding sections.

Chapter 5: A matroid-theoretic method is developed for the
structural analysis of a system of equations under a more realistic
setting than in Chapter 2. First, the rank of a mixed matrix is
characterized in matroid-theoretic terms in 819, and an efficient
algorithm for computing it is described in 820. Matroidal conditions
are given in 821 to the structural solvability under the refined
formulation, along with some practical examples. Then the canonical
forms of mixed matrices are considered in 822 to 824, which unify the
LU-decomposition and the Dulmage-Mendelsohn decomposition. They
provide in 8§25 a powerful method for hierarchical decomposition of a
system of linear/nonlinear equations into smaller subsystems. Finally

miscellaneous results are mentioned in §26.
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Chapter 6: Structural controllability of a dynamical system is
investigated by means of matroid-theoretic concepts under the
mathematical model established in Chapter 4. As a prototype of our
approach, the dynamical degree is characterized in 8§27 in connection
with the independent-flow problem. Then the matroidal conditions are
derived in §28 for the structural controllability, followed by the
description in 829 of the combinatorial algorithm for testing them and
by some illustrative examples of §30. Relations to other works are

mentioned in §31.

Finally, the results obtained and the problems left unanswered

are summarized in the Conclusion.



Chapter 1. Preliminaries

This chapter recapitulates the mathematical preliminaries needed
in the subsequent arguments. In particular, brief mention is made of
the relevant concepts in algebra, graph theory and matroid theory.
Emphasis is laid on the algebraic independence, the Dulmage-Mendelsohn
decomposition of bipartite graphs with reference to matchings, and the
decomposition principle of submodular functions. Some observations

which are not explicit in the literature are also made.

1. Convention and Notation

Expressions are referred to by their numbers; for example, (2.1)
designates the expression (2.1) that appears in §2. Similarly for
figures and tables.

Some of the symbols used in this book are listed below.

ring of integers
field of rational numbers
field of real numbers
set of nonnegative real numbers
field of complex numbers

a commutative field, a subfield of F

H R Q ©® T O N

a commutative field, an extension of K
K( ) : field adjunction to K

K[ 1 : ring adjunction to K

dimKF : degree of transcendency of F over K

set of partial derivatives

==

"general part" of D

F;m,n) : set of m by n matrices over F

EX®

(F/K;m,n) : set of m by n mixed matrices over F with respect

to K
QQ(F/K;mQ,mT,n) : set of mQ+mT by n layered mixed matrices over F
with respect to K

(]

L(n,K) : set of n by n nonsingular matrices over K

(general linear group of degree n over K)

1=

) : collection of the nonvanishing entries of a matrix



6 Chap. 1. Preliminaries

r( ) : rank of a matrix
t( ) : term-rank of a matrix
R : row-set of a matrix

C : column-set of a matrix

M|S : restriction of a matroid M to a set S
M.S : contraction of a matroid M to a set S
M( ) : linear matroid defined by a matrix

M{ } : linear matroid defined by a subspace

3 initial vertex of an arc

9 terminal vertex of an arc

s* : set of out-going arcs from a vertex

§ set of in-coming arcs to a vertex

(u,v) : an arc directed from initial vertex u to terminal
vertex v

-#-> : reachability on a graph
| | : cardinality of a set

< : a partial order

[< : relation of "covered by" with respect to a partial order <,
i.e., x |< y means that x < y, x # y and there exists no
z (# x, y) such that x < z < y.
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2. Algebra

2.1. Algebraic independence ([Baker 75), [Jacobson 64], [Waerden 551)
Let F > K be fields; K is a subfield of F, and F is an extension

field of K. For a subset Y of F, we denote by K(Y) and K[Y] the field

and the ring adjunction, respectively; K(Y) is the extension field of

K generated by Y over K, while K[Y] the ring generated by Y over K.

A polynomial in X1, ey Xq over K (i.e., with coefficients from
K) is called nontrivial if some of its coefficients are distinct from
zero. An element y of F is called algebraic over K if there exists a
nontrivial polynomial p(X) in one indeterminate X over K such that

p(y) = 0. An element of F is called transcendental over K if it is

not algebraic over K. A subset (more precisely, multiset)

Y = {y1,...,yq} of F is called algebraically independent if one of the
following equivalent conditions holds:
(i) For any i, vy is transcendental over K(Y\yi).
(ii) There exists no nontrivial polynomial p(X1,...,Xq) in
q indeterminates over K such that p(y1,...,yq) = 0.
(iii) The degree of transcendency of the extension field
K(yj,...,yq) over K equals g, i.e., dimKK(y1,...,yq) = q.

Many important properties concerning algebraic independence may
be viewed as consequences of the fact that algebraic independence over
a fixed base field K defines a matroid on a finite subset of F, called
algebraic matroid, of which mention will be made in §4.2.

Finally we refer to the following theorem.

Theorem 2.1 (Lindemann-Weierstrass Theorem). Let Tqs s yq be
algebraic numbers over Q that are linearly independent over Q. Then

{exp Yqseeer€XP yq} is algebraically independent over Q. a]

2.2. Rank, term-rank and generic-rank

Let A=(aij) be an mxn matrix over a field K, i.e., A € M(K;m,n).
A[I,J] means the submatrix of A with rows in I and columns in J. The
collection (or multiset, to be more precise) of the nonvanishing
entries of a matrix A will be denoted by N(A), where we understand
that with each element 845 € N(A), the pair (i,j) of indices is
implicitly associated.

The rank of A, in the ordinary sense in linear algebra, is
denoted by r(A). The term-rank of A, denoted by t(A), is defined as
the maximum of k such that ai(1)j(1)ai(2)j(2)'..ai(k)j(k) # 0 for some
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suitably chosen distinct rows i(1), i(2), ..., i(k) and columns j(1),
j2), veey k). The term-rank of A is equal to the maximum size of
a matching on the bipartite graph B = (V+,V—;£(A)) (cf. 83) associated
with A; it has the vertex-set V'uv™ (Vinv™=g) with V' and v~
corresponding to the column-set and the row-set, respectively, and the
arc-set corresponding to the nonvanishing entries of A, that is, an
arc (j,i) from j € V" to i e VT exists in B iff a; . # 0. By utilizing
an efficient algorithm [Hoperoft-Karp 73], [Lawler 76],
[Papadimitriou-Steiglitz 82] for finding a maximum matching on a
bipartite graph, we can determine the term-rank of a matrix with graph
manipulations of complexity O(mn (min(m,n))1/2).

Let the entries aij of A be rational functions over K in q
independent parameters, or indeterminates, X1,...,Xq. If the rank of
A is uniquely determined except for those parameter values in K2 which
lie outside some proper algebraic variety [Jacobson 64], [Waerden 55]
in Kq, we call the uniquely determined rank the generic-rank of A with
respect to parameters X1,...,X

The generic-rank is smaller than or equal to the term-rank. We
are often interested in the cases where these two coincide. If each
of the nonvanishing entries of A is an indeterminate by itself, the
generic-rank of A agrees with the term-rank of A, regardless of the
characteristic of K. A less obvious example is the case of symmetric
matrices. Namely, if A=(aij) is a symmetric matrix and K is of
characteristic zero, the term-rank of A is equal to the generic-rank
of A with {aijlaij # 0, isj} as the set of independent parameters.
Several other classes of matrices are known whose generic-ranks admit
combinatorial characterizations; for instance, the generic-rank of a
"skew-plus-diagonal" matrix is expressed in terms of a non-bipartite
matching in [Anderson 75].

The generic-rank of A, the entries of which are still assumed to
be rational functions in X1,...,Xq over K (> Q), is equal to the
maximum of the rank of A with particular values (in K) given to the
parameters. Suppose that F is an extension field of K such that dimKF
is infinite, which is the case with K=Q and F=R. Then we can choose
an arbitrary number of elements in F which are algebraically
independent over K. It is not difficult to observe that the generic-
rank of A is equal to the rank of A with parameter values fixed to

transcendentals in F which are algebraically independent over K.
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3. Graph

3.1. Directed graph

Let G = (V,A) be a directed graph with vertex-set VAand arc-set
A. For an arc a € A, ota (57a) denotes the initial (terminal) vertex
of a, while for a vertex v e V, §'v (67v) is the set of out-going
(in—coming) arcs incident to v. For two vertices u and v, we say that
v is reachable from u on G, which we denote as "u-#->v on G" (or
simply, "u-%->vy"), iff there exists a directed path from u to v on G.

A vertex is called maximal (minimal) if it has no in-coming

(out-going) arcs.

For V! (cV) the vertex-induced subgraph, or the section graph, on
V' is a graph G' = (V',A') with A' = {a e A| 3ta ¢ V', 97a € V'}. We
also say that G' is obtained from G by deleting the vertices of V\V'.

Two vertices u and v belong to the same strongly connected

component (or strong component, in short) iff u-#->v and v-%#->u. The

vertex-set V is partitioned into strong components {Vi}, each of which
determines the vertex-induced subgraph (i.e., section graph) Gi =
(Vi’Ai) of G, also called a strong component of G. Partial order <
can be defined on the family of strong components Gi = (Vi’Ai) of G,
or, in other words, on the family of subsets Vi of V, by

Vi < V., <==> v.—*->vi on G for some viEVi and v.eV..
We also write Gi < G, iff Vi < Vj' An efficient algorithm of
complexity O(|A|) is known for the decomposition of a graph into
strong components.

3.2. Bipartite graph ([Ford-Fulkerson 62], [Iri-Han 77], [Lawler 761])
Let B = (V+,V';A) be a bipartite graph with vertex-set consisting

of two disjoint parts V+ and V', and with arc-set A, where arcs are
directed from V' to V-. TFor W' (cV+) we often write F(W+) = 3_6+(W+)
(cV™), which stands for the set of vertices in V  adjacent to the
vertices in W+.

A cover of B is a pair (W',W™) such that W < V', W~ ¢ V7, and no
arcs exist from VI\WY to V"\W™. The size of a cover (W+,W_) is
defined to be |W+|+]W_| and a cover of minimum size is called a
minimum cover.

A matching M on B is a subset of A such that no two arcs in M
share a common vertex incident to them. If we denote by 8+M (™M) the
set of vertices in V' (V') incident to arcs in M, this condition is
equivalent to |8+M|+|B_M|=2|M]. A vertex v is said to be covered by M
iff ve 9 MUdTM. A matching of maximum cardinality is called a



